These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
975 related articles for article (PubMed ID: 16294277)
1. Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. Fukuda A; Hikita A; Wakeyama H; Akiyama T; Oda H; Nakamura K; Tanaka S J Bone Miner Res; 2005 Dec; 20(12):2245-53. PubMed ID: 16294277 [TBL] [Abstract][Full Text] [Related]
2. Activated c-Fms recruits Vav and Rac during CSF-1-induced cytoskeletal remodeling and spreading in osteoclasts. Sakai H; Chen Y; Itokawa T; Yu KP; Zhu ML; Insogna K Bone; 2006 Dec; 39(6):1290-301. PubMed ID: 16950670 [TBL] [Abstract][Full Text] [Related]
3. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Glantschnig H; Fisher JE; Wesolowski G; Rodan GA; Reszka AA Cell Death Differ; 2003 Oct; 10(10):1165-77. PubMed ID: 14502240 [TBL] [Abstract][Full Text] [Related]
4. Filamin A regulates monocyte migration through Rho small GTPases during osteoclastogenesis. Leung R; Wang Y; Cuddy K; Sun C; Magalhaes J; Grynpas M; Glogauer M J Bone Miner Res; 2010 May; 25(5):1077-91. PubMed ID: 19929439 [TBL] [Abstract][Full Text] [Related]
5. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. Wang Y; Lebowitz D; Sun C; Thang H; Grynpas MD; Glogauer M J Bone Miner Res; 2008 Feb; 23(2):260-70. PubMed ID: 17922611 [TBL] [Abstract][Full Text] [Related]
6. Role of c-Src in cellular events associated with colony-stimulating factor-1-induced spreading in osteoclasts. Insogna K; Tanaka S; Neff L; Horne W; Levy J; Baron R Mol Reprod Dev; 1997 Jan; 46(1):104-8. PubMed ID: 8981371 [TBL] [Abstract][Full Text] [Related]
7. Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Grey A; Chen Y; Paliwal I; Carlberg K; Insogna K Endocrinology; 2000 Jun; 141(6):2129-38. PubMed ID: 10830300 [TBL] [Abstract][Full Text] [Related]
8. Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. Miyazaki T; Katagiri H; Kanegae Y; Takayanagi H; Sawada Y; Yamamoto A; Pando MP; Asano T; Verma IM; Oda H; Nakamura K; Tanaka S J Cell Biol; 2000 Jan; 148(2):333-42. PubMed ID: 10648566 [TBL] [Abstract][Full Text] [Related]
9. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration. Kim JM; Kim MY; Lee K; Jeong D Mol Cell Endocrinol; 2016 Dec; 437():261-267. PubMed ID: 27576187 [TBL] [Abstract][Full Text] [Related]
10. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-κB pathway in osteoclasts. Kalbasi Anaraki P; Patecki M; Tkachuk S; Kiyan Y; Haller H; Dumler I J Bone Miner Res; 2015 Feb; 30(2):379-88. PubMed ID: 25196912 [TBL] [Abstract][Full Text] [Related]
11. Wortmannin inhibits spreading and chemotaxis of rat osteoclasts in vitro. Pilkington MF; Sims SM; Dixon SJ J Bone Miner Res; 1998 Apr; 13(4):688-94. PubMed ID: 9556069 [TBL] [Abstract][Full Text] [Related]
12. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation. Zeng C; Goodluck H; Qin X; Liu B; Mohan S; Xing W Am J Physiol Endocrinol Metab; 2016 Oct; 311(4):E772-E780. PubMed ID: 27600824 [TBL] [Abstract][Full Text] [Related]
13. 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate suppresses osteoclast maturation and bone resorption by targeting macrophage-colony stimulating factor signaling. Park SJ; Park DR; Bhattarai D; Lee K; Kim J; Bae YS; Lee SY Mol Cells; 2014 Aug; 37(8):628-35. PubMed ID: 25139265 [TBL] [Abstract][Full Text] [Related]
14. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Lee SE; Woo KM; Kim SY; Kim HM; Kwack K; Lee ZH; Kim HH Bone; 2002 Jan; 30(1):71-7. PubMed ID: 11792567 [TBL] [Abstract][Full Text] [Related]
15. Regulation of Osteoclast Multinucleation by the Actin Cytoskeleton Signaling Network. Takito J; Otsuka H; Yanagisawa N; Arai H; Shiga M; Inoue M; Nonaka N; Nakamura M J Cell Physiol; 2015 Feb; 230(2):395-405. PubMed ID: 25056912 [TBL] [Abstract][Full Text] [Related]
16. BSP and RANKL induce osteoclastogenesis and bone resorption synergistically. Valverde P; Tu Q; Chen J J Bone Miner Res; 2005 Sep; 20(9):1669-79. PubMed ID: 16059638 [TBL] [Abstract][Full Text] [Related]
17. Loss of Cbl-PI3K interaction enhances osteoclast survival due to p21-Ras mediated PI3K activation independent of Cbl-b. Adapala NS; Barbe MF; Tsygankov AY; Lorenzo JA; Sanjay A J Cell Biochem; 2014 Jul; 115(7):1277-89. PubMed ID: 24470255 [TBL] [Abstract][Full Text] [Related]
18. Rac1 mediates the osteoclast gains-in-function induced by haploinsufficiency of Nf1. Yan J; Chen S; Zhang Y; Li X; Li Y; Wu X; Yuan J; Robling AG; Kapur R; Chan RJ; Yang FC Hum Mol Genet; 2008 Apr; 17(7):936-48. PubMed ID: 18089636 [TBL] [Abstract][Full Text] [Related]
19. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Huang Q; Shen HM; Ong CN Cell Mol Life Sci; 2005 May; 62(10):1167-75. PubMed ID: 15928809 [TBL] [Abstract][Full Text] [Related]
20. Cafestol has a weaker inhibitory effect on osteoclastogenesis than kahweol and promotes osteoblast differentiation. Fukuma Y; Sakai E; Nishishita K; Okamoto K; Tsukuba T Biofactors; 2015; 41(4):222-31. PubMed ID: 26154488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]