These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 1629475)

  • 41. Adapting Hearing Devices to the Individual Ear Acoustics: Database and Target Response Correction Functions for Various Device Styles.
    Denk F; Ernst SMA; Ewert SD; Kollmeier B
    Trends Hear; 2018; 22():2331216518779313. PubMed ID: 29877161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.
    Keefe DH; Feeney MP; Hunter LL; Fitzpatrick DF
    J Acoust Soc Am; 2017 Jan; 141(1):499. PubMed ID: 28147608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Verifying the attenuation of earplugs in situ: method validation using artificial head and numerical simulations.
    Bockstael A; de Greve B; Van Renterghem T; Botteldooren D; D'Haenens W; Keppler H; Maes L; Philips B; Swinnen F; Vinck B
    J Acoust Soc Am; 2008 Aug; 124(2):973-81. PubMed ID: 18681589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acoustic resonators in the coupler and in the ear.
    Hayes D
    Scand Audiol; 1993; 22(3):187-91. PubMed ID: 8210958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification.
    McCreery RW; Pittman A; Lewis J; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Jul; 126(1):15-24. PubMed ID: 19603858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insert earphones--a comparison of short-duration signals measured with an occluded ear simulator and a 2cc coupler.
    Haughton P
    Int J Audiol; 2006 Jan; 45(1):60-5. PubMed ID: 16562566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of venting on wind noise levels measured at the eardrum.
    Chung K
    Ear Hear; 2013; 34(4):470-81. PubMed ID: 23403807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Side branch and parallel vent effects in real ears and in acoustical and electrical models.
    Studebaker GA; Cox RM
    J Am Audiol Soc; 1977; 3(2):108-17. PubMed ID: 914672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of ear canal occlusion on hearing sensitivity: A loudness experiment.
    Bonnet F; NĂ©lisse H; Voix J
    J Acoust Soc Am; 2018 Jun; 143(6):3574. PubMed ID: 29960431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal.
    Stinson MR; Shaw EA; Lawton BW
    J Acoust Soc Am; 1982 Sep; 72(3):766-73. PubMed ID: 7130535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of functional gain and 2 cm3 coupler gain.
    Hawkins DB; Haskell GB
    J Speech Hear Disord; 1982 Feb; 47(1):71-6. PubMed ID: 7176579
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deriving the real-ear SPL of audiometric data using the "coupler to dial difference" and the "real ear to coupler difference".
    Munro KJ; Davis J
    Ear Hear; 2003 Apr; 24(2):100-10. PubMed ID: 12677107
    [TBL] [Abstract][Full Text] [Related]  

  • 53. System identification of feedback in hearing aids.
    Hellgren J; Lunner T; Arlinger S
    J Acoust Soc Am; 1999 Jun; 105(6):3481-96. PubMed ID: 10380671
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Individualized prediction of the sound pressure at the eardrum for an earpiece with integrated receivers and microphones.
    Vogl S; Blau M
    J Acoust Soc Am; 2019 Feb; 145(2):917. PubMed ID: 30823792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calibration of ear canals for audiometry at high frequencies.
    Stevens KN; Berkovitz R; Kidd G; Green DM
    J Acoust Soc Am; 1987 Feb; 81(2):470-84. PubMed ID: 3558965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of in-situ calibration methods for quantifying input to the middle ear.
    Lewis JD; McCreery RW; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Dec; 126(6):3114-24. PubMed ID: 20000925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acoustic intensity, impedance and reflection coefficient in the human ear canal.
    Farmer-Fedor BL; Rabbitt RD
    J Acoust Soc Am; 2002 Aug; 112(2):600-20. PubMed ID: 12186041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P; Keefe DH; Simmons JL; Gorga MP
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compensating for ear-canal acoustics when measuring otoacoustic emissions.
    Charaziak KK; Shera CA
    J Acoust Soc Am; 2017 Jan; 141(1):515. PubMed ID: 28147590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantifying ear-canal geometry with multiple computer-assisted tomographic scans.
    Egolf DP; Nelson DK; Howell HC; Larson VD
    J Acoust Soc Am; 1993 May; 93(5):2809-19. PubMed ID: 8315148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.