These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 1629486)

  • 61. Phonatory Strategies of Male Vocalists in Singing Diatonic Scales With Various Dynamic Shapings.
    Vurma A
    J Voice; 2017 Mar; 31(2):254.e17-254.e29. PubMed ID: 27469449
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Glottal Aerodynamic Measures in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
    Espinoza VM; Zañartu M; Van Stan JH; Mehta DD; Hillman RE
    J Speech Lang Hear Res; 2017 Aug; 60(8):2159-2169. PubMed ID: 28785762
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessment of the dynamics of vocal fold contact from the electroglottogram: data from normal male subjects.
    Orlikoff RF
    J Speech Hear Res; 1991 Oct; 34(5):1066-72. PubMed ID: 1749236
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Whisper and Phonation: Aerodynamic Comparisons Across Adduction and Loudness.
    Konnai R; Scherer RC; Peplinski A; Ryan K
    J Voice; 2017 Nov; 31(6):773.e11-773.e20. PubMed ID: 28366247
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Common Vocal Effects and Partial Glottal Vibration in Professional Nonclassical Singers.
    Caffier PP; Ibrahim Nasr A; Ropero Rendon MDM; Wienhausen S; Forbes E; Seidner W; Nawka T
    J Voice; 2018 May; 32(3):340-346. PubMed ID: 28711454
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evidence of the significance of secondary excitations of the vocal tract for vocal intensity.
    Alku P; Vintturi J; Vilkman E
    Folia Phoniatr Logop; 2001; 53(4):185-97. PubMed ID: 11385278
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A comparison of glottal voice source quantification parameters in breathy, normal and pressed phonation of female and male speakers.
    Alku P; Vilkman E
    Folia Phoniatr Logop; 1996; 48(5):240-54. PubMed ID: 8828282
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: kymographic data from normal subjects.
    Lohscheller J; Svec JG; Döllinger M
    Logoped Phoniatr Vocol; 2013 Dec; 38(4):182-92. PubMed ID: 23173880
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Flow Glottogram and Subglottal Pressure Relationship in Singers and Untrained Voices.
    Sundberg J
    J Voice; 2018 Jan; 32(1):23-31. PubMed ID: 28495328
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Classification of vocal aging using parameters extracted from the glottal signal.
    Forero Mendoza LA; Cataldo E; Vellasco MM; Silva MA; Apolinário JA
    J Voice; 2014 Sep; 28(5):532-7. PubMed ID: 24880675
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of Liuzijue Qigong Posture on Aerodynamics of Phonation in Healthy Volunteers.
    Gong T; Lu T; Zhang Y; Li Z; Shen A; Niu J; Fang R; Shan C
    J Voice; 2024 Jul; 38(4):967.e1-967.e7. PubMed ID: 35183404
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of voice-use profiles between elementary classroom and music teachers.
    Morrow SL; Connor NP
    J Voice; 2011 May; 25(3):367-72. PubMed ID: 20359861
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparisons among aerodynamic, electroglottographic, and acoustic spectral measures of female voice.
    Holmberg EB; Hillman RE; Perkell JS; Guiod PC; Goldman SL
    J Speech Hear Res; 1995 Dec; 38(6):1212-23. PubMed ID: 8747815
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Voice source differences between registers in female musical theater singers.
    Björkner E; Sundberg J; Cleveland T; Stone E
    J Voice; 2006 Jun; 20(2):187-97. PubMed ID: 16051463
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Voice Source Variation Between Vowels in Male Opera Singers.
    Sundberg J; Lã FM; Gill BP
    J Voice; 2016 Sep; 30(5):509-17. PubMed ID: 26350698
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.