These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16294958)

  • 1. Fabrication of alignment structures for a fiber resonator by use of deep-ultraviolet lithography.
    Liu X; Brenner KH; Wilzbach M; Schwarz M; Fernholz T; Schmiedmayer J
    Appl Opt; 2005 Nov; 44(32):6857-60. PubMed ID: 16294958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Simulations for Ultraviolet Lithography Process of Thick SU-8 Photoresist.
    Zhou ZF; Huang QA
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of asperical lensed optical fibers with an electro-static pulling of SU-8 photoresist.
    Wu CC; Tseng YD; Kuo SM; Lin CH
    Opt Express; 2011 Nov; 19(23):22993-8. PubMed ID: 22109178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography.
    Benedikovic D; Alonso-Ramos C; Pérez-Galacho D; Guerber S; Vakarin V; Marcaud G; Le Roux X; Cassan E; Marris-Morini D; Cheben P; Boeuf F; Baudot C; Vivien L
    Opt Lett; 2017 Sep; 42(17):3439-3442. PubMed ID: 28957057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber Lithography: A Facile Lithography Platform Based on Electromagnetic Phase Modulation Using a Highly Birefringent Electrospun Fiber.
    Kim J; Shin D; Chang J
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20056-20066. PubMed ID: 32297731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 2D Waveguide Method for Lithography Simulation of Thick SU-8 Photoresist.
    Geng ZC; Zhou ZF; Dai H; Huang QA
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33138304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8.
    Yang R; Soper SA; Wang W
    Sens Actuators A Phys; 2006; 127(1):123-130. PubMed ID: 18846244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist.
    Ong BH; Yuan X; Tao S; Tjin SC
    Opt Lett; 2006 May; 31(10):1367-9. PubMed ID: 16642107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications.
    Shen SC; Huang JC
    Opt Express; 2009 Jul; 17(15):13122-7. PubMed ID: 19654717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography.
    Yin Z; Cheng E; Zou H
    Lab Chip; 2014 May; 14(9):1614-21. PubMed ID: 24647653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustable refractive index modulation for a waveguide with SU-8 photoresist by dual-UV exposure lithography.
    Ong BH; Yuan X; Tjin SC
    Appl Opt; 2006 Nov; 45(31):8036-9. PubMed ID: 17068544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8.
    Williams HE; Freppon DJ; Kuebler SM; Rumpf RC; Melino MA
    Opt Express; 2011 Nov; 19(23):22910-22. PubMed ID: 22109168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SU-8 nanoimprint fabrication of wire-grid polarizers using deep-UV interference lithography.
    Wang J; Zhao Y; Agha I; Sarangan AM
    Opt Lett; 2015 Oct; 40(19):4396-9. PubMed ID: 26421540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.
    Wu J; Guo X; Zhang AP; Tam HY
    Opt Express; 2015 Nov; 23(23):29708-14. PubMed ID: 26698452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-based flexible interference lithography for photonic nanopatterning.
    He J; Lin Y; Zhang X
    Opt Express; 2014 Oct; 22(21):26386-91. PubMed ID: 25401671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a three-layer SU-8 mould with inverted T-shaped cavities based on a sacrificial photoresist layer technique.
    Liu J; Zhang D; Sha B; Yin P; Xu Z; Liu C; Wang L; Xu F; Wang L
    Biomed Microdevices; 2014 Oct; 16(5):655-60. PubMed ID: 24850230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins.
    Ou J; Glawdel T; Ren CL; Pawliszyn J
    Lab Chip; 2009 Jul; 9(13):1926-32. PubMed ID: 19532968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8.
    Misawa H; Kondo T; Juodkazis S; Mizeikis V; Matsuo S
    Opt Express; 2006 Aug; 14(17):7943-53. PubMed ID: 19529163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadcasting photonic lab on a chip concept through a low cost manufacturing approach.
    Rodríguez-Ruiz I; Teychené S; Van Pham N; Radajewski D; Lamadie F; Llobera A; Charton S
    Talanta; 2017 Aug; 170():180-184. PubMed ID: 28501156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable sub-kHz single-mode fiber laser based on a hybrid microbottle resonator.
    Ma R; Yuan S; Zhu S; Shi L; Zhang X
    Opt Lett; 2018 Nov; 43(21):5315-5318. PubMed ID: 30382995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.