These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16294970)

  • 21. Suppressing phase errors from vibration in phase-shifting interferometry.
    Deck LL
    Appl Opt; 2009 Jul; 48(20):3948-60. PubMed ID: 19593347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demodulation of two-shot fringe patterns with random phase shifts by use of orthogonal polynomials and global optimization.
    Tian C; Liu S
    Opt Express; 2016 Feb; 24(4):3202-15. PubMed ID: 26906984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving principal component analysis based phase extraction method for phase-shifting interferometry by integrating spatial information.
    Yatabe K; Ishikawa K; Oikawa Y
    Opt Express; 2016 Oct; 24(20):22881-22891. PubMed ID: 27828355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial dual-orthogonal (SDO) phase-shifting algorithm by pre-recomposing the interference fringe.
    Wang Y; Li B; Zhong L; Tian J; Lu X
    Opt Express; 2017 Jul; 25(15):17446-17456. PubMed ID: 28789236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for fringe enhancement in holographic interferometry for measurement of in-plane displacements.
    Carlsson TE; Gustafsson J; Abramson NH
    Appl Opt; 1998 Apr; 37(10):1845-8. PubMed ID: 18273097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods.
    Kaufmann GH; Galizzi GE
    Appl Opt; 2002 Dec; 41(34):7254-63. PubMed ID: 12477116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fringe direction weighted autofocusing algorithm for gear tooth flank form deviation measurement based on an interferogram.
    Wang X; Zhu X; Kou K; Liu J; Liu Y; Qian B
    Appl Opt; 2021 Dec; 60(36):11066-11074. PubMed ID: 35201095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Fringe Pattern Decomposition with a Cross-Correlation Index for Phase Retrieval in Fringe Projection 3D Measurements.
    Zhu X; Song L; Wang H; Guo Q
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Open-loop phase shifting for fast acquisition of interferograms in low light levels.
    McCracken TM; Jurgenson CA; Haniff CA; Buscher DF; Young JS; Creech-Eakman M
    Appl Opt; 2013 Jul; 52(20):4922-32. PubMed ID: 23852208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of interferograms with a spatial radial carrier or closed fringes and its holographic analogy.
    García-Márquez J; Malacara-Hernández D; Servín M
    Appl Opt; 1998 Dec; 37(34):7977-82. PubMed ID: 18301687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis techniques of lattice fringe images for quantified evaluation of pyrocarbon by chemical vapor infiltration.
    Li M; Zhao H; Qi L; Li H
    Microsc Microanal; 2014 Oct; 20(5):1591-600. PubMed ID: 25050808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic phase measurement in shearography by clustering method and Fourier filtering.
    Huang Y; Janabi-Sharifi F; Liu Y; Hung YY
    Opt Express; 2011 Jan; 19(2):606-15. PubMed ID: 21263600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns.
    Larkin K
    Opt Express; 2001 Aug; 9(5):236-53. PubMed ID: 19421294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase recovery from a single fringe pattern using an orientational vector-field-regularized estimator.
    Villa J; De la Rosa I; Miramontes G; Quiroga JA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2766-73. PubMed ID: 16396038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polynomial fitting of interferograms with Gaussian errors on fringe coordinates. 1: Computer simulations.
    Cordero-Dávila A; Corínejo-Rodrfguez A; Cardona-Nuñez O
    Appl Opt; 1994 Nov; 33(31):7339-42. PubMed ID: 20941291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Algorithm for multiple-beam Fizeau interferograms with arbitrary phase shifts.
    Xu J; Xu Q; Chai L; Peng H
    Opt Express; 2008 Nov; 16(23):18922-32. PubMed ID: 19581983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-shot full-field interferometric polarimeter with an integrated calibration scheme.
    Naik DN; Singh RK; Itou H; Brundavanam MM; Miyamoto Y; Takeda M
    Opt Lett; 2012 Aug; 37(15):3282-4. PubMed ID: 22859159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-based inversion of speckle interferometer fringe patterns.
    Schmitt DR; Hunt RW
    Appl Opt; 1998 May; 37(13):2573-8. PubMed ID: 18273195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated collimation testing by incorporating the Fourier transform method in Talbot interferometry.
    Dhanotia J; Prakash S
    Appl Opt; 2011 Apr; 50(10):1446-52. PubMed ID: 21460913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fourier spectra for nonuniform phase-shifting algorithms based on principal component analysis.
    Servin M; Padilla M; Garnica G; Paez G
    Opt Express; 2019 Sep; 27(18):25861-25871. PubMed ID: 31510449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.