These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Demodulation of two-shot fringe patterns with random phase shifts by use of orthogonal polynomials and global optimization. Tian C; Liu S Opt Express; 2016 Feb; 24(4):3202-15. PubMed ID: 26906984 [TBL] [Abstract][Full Text] [Related]
23. Improving principal component analysis based phase extraction method for phase-shifting interferometry by integrating spatial information. Yatabe K; Ishikawa K; Oikawa Y Opt Express; 2016 Oct; 24(20):22881-22891. PubMed ID: 27828355 [TBL] [Abstract][Full Text] [Related]
24. Spatial dual-orthogonal (SDO) phase-shifting algorithm by pre-recomposing the interference fringe. Wang Y; Li B; Zhong L; Tian J; Lu X Opt Express; 2017 Jul; 25(15):17446-17456. PubMed ID: 28789236 [TBL] [Abstract][Full Text] [Related]
25. Method for fringe enhancement in holographic interferometry for measurement of in-plane displacements. Carlsson TE; Gustafsson J; Abramson NH Appl Opt; 1998 Apr; 37(10):1845-8. PubMed ID: 18273097 [TBL] [Abstract][Full Text] [Related]
26. Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods. Kaufmann GH; Galizzi GE Appl Opt; 2002 Dec; 41(34):7254-63. PubMed ID: 12477116 [TBL] [Abstract][Full Text] [Related]
27. Fringe direction weighted autofocusing algorithm for gear tooth flank form deviation measurement based on an interferogram. Wang X; Zhu X; Kou K; Liu J; Liu Y; Qian B Appl Opt; 2021 Dec; 60(36):11066-11074. PubMed ID: 35201095 [TBL] [Abstract][Full Text] [Related]
28. Assessment of Fringe Pattern Decomposition with a Cross-Correlation Index for Phase Retrieval in Fringe Projection 3D Measurements. Zhu X; Song L; Wang H; Guo Q Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360414 [TBL] [Abstract][Full Text] [Related]
29. Open-loop phase shifting for fast acquisition of interferograms in low light levels. McCracken TM; Jurgenson CA; Haniff CA; Buscher DF; Young JS; Creech-Eakman M Appl Opt; 2013 Jul; 52(20):4922-32. PubMed ID: 23852208 [TBL] [Abstract][Full Text] [Related]
30. Analysis of interferograms with a spatial radial carrier or closed fringes and its holographic analogy. García-Márquez J; Malacara-Hernández D; Servín M Appl Opt; 1998 Dec; 37(34):7977-82. PubMed ID: 18301687 [TBL] [Abstract][Full Text] [Related]
31. Analysis techniques of lattice fringe images for quantified evaluation of pyrocarbon by chemical vapor infiltration. Li M; Zhao H; Qi L; Li H Microsc Microanal; 2014 Oct; 20(5):1591-600. PubMed ID: 25050808 [TBL] [Abstract][Full Text] [Related]
32. Dynamic phase measurement in shearography by clustering method and Fourier filtering. Huang Y; Janabi-Sharifi F; Liu Y; Hung YY Opt Express; 2011 Jan; 19(2):606-15. PubMed ID: 21263600 [TBL] [Abstract][Full Text] [Related]
33. A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns. Larkin K Opt Express; 2001 Aug; 9(5):236-53. PubMed ID: 19421294 [TBL] [Abstract][Full Text] [Related]
34. Phase recovery from a single fringe pattern using an orientational vector-field-regularized estimator. Villa J; De la Rosa I; Miramontes G; Quiroga JA J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2766-73. PubMed ID: 16396038 [TBL] [Abstract][Full Text] [Related]
35. Polynomial fitting of interferograms with Gaussian errors on fringe coordinates. 1: Computer simulations. Cordero-Dávila A; Corínejo-Rodrfguez A; Cardona-Nuñez O Appl Opt; 1994 Nov; 33(31):7339-42. PubMed ID: 20941291 [TBL] [Abstract][Full Text] [Related]
36. Algorithm for multiple-beam Fizeau interferograms with arbitrary phase shifts. Xu J; Xu Q; Chai L; Peng H Opt Express; 2008 Nov; 16(23):18922-32. PubMed ID: 19581983 [TBL] [Abstract][Full Text] [Related]