BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16295844)

  • 1. Chromate reduction and retention processes within arid subsurface environments.
    Ginder-Vogel M; Borch T; Mayes MA; Jardine PM; Fendorf S
    Environ Sci Technol; 2005 Oct; 39(20):7833-9. PubMed ID: 16295844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of coupled dissolution and redox reactions on Cr(VI)aq attenuation during transport in the sediments under hyperalkaline conditions.
    Qafoku NP; Ainsworth CC; Szecsody JE; Qafoku OS; Heald SM
    Environ Sci Technol; 2003 Aug; 37(16):3640-6. PubMed ID: 12953877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process.
    Chen SS; Cheng CY; Li CW; Chai PH; Chang YM
    J Hazard Mater; 2007 Apr; 142(1-2):362-7. PubMed ID: 16987595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and structural constraints of chromate reduction by green rusts.
    Bond DL; Fendorf S
    Environ Sci Technol; 2003 Jun; 37(12):2750-7. PubMed ID: 12854715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria.
    Wielinga B; Mizuba MM; Hansel CM; Fendorf S
    Environ Sci Technol; 2001 Feb; 35(3):522-7. PubMed ID: 11351723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium transport in an acidic waste contaminated subsurface medium: the role of reduction.
    Qafoku NP; Evan Dresel P; Ilton E; McKinley JP; Resch CT
    Chemosphere; 2010 Dec; 81(11):1492-500. PubMed ID: 20875666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: the role of passivation.
    He YT; Traina SJ
    Environ Sci Technol; 2005 Jun; 39(12):4499-504. PubMed ID: 16047786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue.
    Whittleston RA; Stewart DI; Mortimer RJ; Tilt ZC; Brown AP; Geraki K; Burke IT
    J Hazard Mater; 2011 Oct; 194():15-23. PubMed ID: 21871726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromate reduction by waste iron from electroplating wastewater using plug flow reactor.
    Chen SS; Hsu BC; Hung LW
    J Hazard Mater; 2008 Apr; 152(3):1092-7. PubMed ID: 17826895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.
    VanEngelen MR; Peyton BM; Mormile MR; Pinkart HC
    Biodegradation; 2008 Nov; 19(6):841-50. PubMed ID: 18401687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.
    Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D
    Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters.
    Liu J; Wang C; Shi J; Liu H; Tong Y
    J Hazard Mater; 2009 Apr; 163(1):370-5. PubMed ID: 18687521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy.
    Melitas N; Farrell J
    Environ Sci Technol; 2002 Dec; 36(24):5476-82. PubMed ID: 12521178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments.
    Marsh TL; McInerney MJ
    Appl Environ Microbiol; 2001 Apr; 67(4):1517-21. PubMed ID: 11282599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments.
    Tamindžija D; Chromikova Z; Spaić A; Barak I; Bernier-Latmani R; Radnović D
    World J Microbiol Biotechnol; 2019 Mar; 35(4):56. PubMed ID: 30900044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical speciation of chromium in in-vitro cultures of chromate-resistant filamentous fungi.
    Acevedo Aguilar FJ; Wrobel K; Lokits K; Caruso JA; Coreño Alonso A; Gutiérrez Corona JF; Wrobel K
    Anal Bioanal Chem; 2008 Sep; 392(1-2):269-76. PubMed ID: 18665354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.