These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16295851)

  • 41. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol.
    Boyd GR; Ocampo-Gómez AM; Li M; Husserl J
    J Contam Hydrol; 2006 Nov; 88(1-2):69-91. PubMed ID: 16904790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-equilibrium partitioning tracer transport in porous media: 2-D physical modelling and imaging using a partitioning fluorescent dye.
    Jones EH; Smith CC
    Water Res; 2005 Dec; 39(20):5099-111. PubMed ID: 16298415
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of multicomponent diffusion on NAPL dissolution from spherical ternary mixtures.
    Brahma PP; Harmon TC
    J Contam Hydrol; 2003 Dec; 67(1-4):43-60. PubMed ID: 14607469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mass Transfer From Nonaqueous Phase Organic Liquids in Water-Saturated Porous Media.
    Geller JT; Hunt JR
    Water Resour Res; 1993; 29(4):833-845. PubMed ID: 20336189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlation model to predict residual immiscible organic contaminants in sandy soils.
    Chevalier LR; Fonte JM
    J Hazard Mater; 2000 Feb; 72(1):39-52. PubMed ID: 10648947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of domain shapes on the morphological evolution of nonaqueous-phase-liquid dissolution fronts in fluid-saturated porous media.
    Zhao C; Hobbs BE; Ord A
    J Contam Hydrol; 2012 Sep; 138-139():123-40. PubMed ID: 22892525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diffusive partitioning tracer test for nonaqueous phase liquid (NAPL) detection in the vadose zone.
    Werner D; Höhener P
    Environ Sci Technol; 2002 Apr; 36(7):1592-9. PubMed ID: 11999071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hot water flushing for immiscible displacement of a viscous NAPL.
    O'Carroll DM; Sleep BE
    J Contam Hydrol; 2007 May; 91(3-4):247-66. PubMed ID: 17207892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A practical model for mobile, residual, and entrapped NAPL in water-wet porous media.
    White MD; Oostrom M; Lenhard RJ
    Ground Water; 2004; 42(5):734-46. PubMed ID: 15457796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review of NAPL source zone remediation efficiency and the mass flux approach.
    Soga K; Page JW; Illangasekare TH
    J Hazard Mater; 2004 Jul; 110(1-3):13-27. PubMed ID: 15177723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of radon partition coefficients between water and organic liquids and their utilization for the assessment of subsurface NAPL contamination.
    Schubert M; Lehmann K; Paschke A
    Sci Total Environ; 2007 Apr; 376(1-3):306-16. PubMed ID: 17307243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism for detecting NAPL using electrical resistivity imaging.
    Halihan T; Sefa V; Sale T; Lyverse M
    J Contam Hydrol; 2017 Oct; 205():57-69. PubMed ID: 28888731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.
    Lenhard RJ; Oostrom M; Dane JH
    J Contam Hydrol; 2004 Sep; 73(1-4):283-304. PubMed ID: 15614970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.
    Lenhard RJ; Oostrom M; Dane JH
    J Contam Hydrol; 2004 Jul; 71(1-4):261-82. PubMed ID: 15145570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of wettability and saturation on liquid-liquid interfacial area in porous media.
    Jain V; Bryant S; Sharma M
    Environ Sci Technol; 2003 Feb; 37(3):584-91. PubMed ID: 12630476
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses. 2. Numerical simulation.
    Rathfelder KM; Abriola LM; Taylor TP; Pennell KD
    J Contam Hydrol; 2001 Apr; 48(3-4):351-74. PubMed ID: 11285938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Partitioning and interfacial tracers for differentiating NAPL entrapment configuration: column-scale investigation.
    Dai D; Barranco FT; Illangasekare TH
    Environ Sci Technol; 2001 Dec; 35(24):4894-9. PubMed ID: 11775167
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.
    Nakamura K; Kikumoto M
    J Contam Hydrol; 2018 Jul; 214():1-15. PubMed ID: 29571541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray microtomography determination of air-water interfacial area-water saturation relationships in sandy porous media.
    Costanza-Robinson MS; Harrold KH; Lieb-Lappen RM
    Environ Sci Technol; 2008 Apr; 42(8):2949-56. PubMed ID: 18497149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.