These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16295862)

  • 1. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.
    Garoma T; Gurol MD
    Environ Sci Technol; 2005 Oct; 39(20):7964-9. PubMed ID: 16295862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process.
    Wang H; Yuan S; Zhan J; Wang Y; Yu G; Deng S; Huang J; Wang B
    Water Res; 2015 Sep; 80():20-9. PubMed ID: 25989593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Catalytic ozonation by ceramic honeycomb for the degradation of oxalic acid in aqueous solution].
    Zhao L; Sun ZZ; Ma J
    Huan Jing Ke Xue; 2007 Nov; 28(11):2533-8. PubMed ID: 18290478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic modelling of aqueous atrazine ozonation processes in a continuous flow bubble contactor.
    Beltrán FJ; González M; Acedo B; Rivas FJ
    J Hazard Mater; 2000 Dec; 80(1-3):189-206. PubMed ID: 11080578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonolytic decomposition of aqueous bioxalate in the presence of ozone.
    Vecitis CD; Lesko T; Colussi AJ; Hoffmann MR
    J Phys Chem A; 2010 Apr; 114(14):4968-80. PubMed ID: 20229985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and mechanistic insights into the abatement of clofibric acid by integrated UV/ozone/peroxydisulfate process: A modeling and theoretical study.
    Qin W; Lin Z; Dong H; Yuan X; Qiang Z; Liu S; Xia D
    Water Res; 2020 Nov; 186():116336. PubMed ID: 32889366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products.
    Kosaka K; Yamada H; Shishida K; Echigo S; Minear RA; Tsuno H; Matsui S
    Water Res; 2001 Oct; 35(15):3587-94. PubMed ID: 11561618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron type catalysts for the ozonation of oxalic acid in water.
    Beltrán FJ; Rivas FJ; Montero-de-Espinosa R
    Water Res; 2005 Sep; 39(15):3553-64. PubMed ID: 16095660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of 17beta-estradiol in aqueous solution by ozonation in the presence of manganese(II) and oxalic acid.
    Jiang L; Zhang L; Chen J; Ji H
    Environ Technol; 2013; 34(1-4):131-8. PubMed ID: 23530323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation and influence of hydrogen peroxide during ozonation of para-chlorophenol.
    Pi Y; Zhang L; Wang J
    J Hazard Mater; 2007 Mar; 141(3):707-12. PubMed ID: 16938386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Catalytic ozonation of oxalic acid in water with Pt/graphite catalyst].
    Liu ZQ; Ma J; Zhao L
    Huan Jing Ke Xue; 2007 Jun; 28(6):1258-63. PubMed ID: 17674732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2.
    Katsoyiannis IA; Canonica S; von Gunten U
    Water Res; 2011 Jul; 45(13):3811-22. PubMed ID: 21645916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.
    Rosenfeldt EJ; Linden KG; Canonica S; von Gunten U
    Water Res; 2006 Dec; 40(20):3695-704. PubMed ID: 17078993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism and metal ion transformation in photocatalytic ozonation of phenol and oxalic acid with Ag(+)/TiO2.
    Chen Y; Xie Y; Yang J; Cao H; Zhang Y
    J Environ Sci (China); 2014 Mar; 26(3):662-72. PubMed ID: 25079280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.
    Keen OS; Ferrer I; Michael Thurman E; Linden KG
    Chemosphere; 2014 Dec; 117():316-23. PubMed ID: 25150682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reuse of sewage sludge as a catalyst in ozonation--efficiency for the removal of oxalic acid and the control of bromate formation.
    Wen G; Pan ZH; Ma J; Liu ZQ; Zhao L; Li JJ
    J Hazard Mater; 2012 Nov; 239-240():381-8. PubMed ID: 23021317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H
    Srithep S; Phattarapattamawong S
    Chemosphere; 2017 Jun; 176():25-31. PubMed ID: 28254711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of simazine advanced oxidation in water.
    Beltrán FJ; García-Araya JF; Rivas J; Alvarez PM; Rodríguez E
    J Environ Sci Health B; 2000 Jul; 35(4):439-54. PubMed ID: 10874621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of oxalic acid formed on the degradation of phenol by Fenton reagent.
    Nakagawa H; Yamaguchi E
    Chemosphere; 2012 Jun; 88(2):183-7. PubMed ID: 22464857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic ozonation of oxalate with a cerium supported palladium oxide: an efficient degradation not relying on hydroxyl radical oxidation.
    Zhang T; Li W; Croué JP
    Environ Sci Technol; 2011 Nov; 45(21):9339-46. PubMed ID: 21970593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.