These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16295863)

  • 1. Model prognoses for future acidification recovery of surface waters in norway using long-term monitoring data.
    Larssen T
    Environ Sci Technol; 2005 Oct; 39(20):7970-9. PubMed ID: 16295863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Afforestation, seasalt episodes and acidification--a paired catchment study in western Norway.
    Larssen T; Holme J
    Environ Pollut; 2006 Feb; 139(3):440-50. PubMed ID: 16129529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate variability and forecasting surface water recovery from acidification: modelling drought-induced sulphate release from wetlands.
    Aherne J; Larssen T; Cosby BJ; Dillon PJ
    Sci Total Environ; 2006 Jul; 365(1-3):186-99. PubMed ID: 16616319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The significance of the North Atlantic Oscillation (NAO) for sea-salt episodes and acidification-related effects in Norwegian rivers.
    Hindar A; Tørseth K; Henriksen A; Orsolini Y
    Environ Sci Technol; 2004 Jan; 38(1):26-33. PubMed ID: 14740713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA.
    McHale MR; Burns DA; Siemion J; Antidormi MR
    Environ Pollut; 2017 Oct; 229():607-620. PubMed ID: 28689149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987-2008.
    Löfgren S; Zetterberg T
    Sci Total Environ; 2011 Apr; 409(10):1916-26. PubMed ID: 21377191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional target loads of atmospheric nitrogen and sulfur deposition for the protection of stream and watershed soil resources of the Adirondack Mountains, USA.
    McDonnell TC; Driscoll CT; Sullivan TJ; Burns DA; Baldigo BP; Shao S; Lawrence GB
    Environ Pollut; 2021 Jul; 281():117110. PubMed ID: 33872891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidification of soil solution in a chestnut forest stand in southern Switzerland: are there signs of recovery?
    Pannatier EG; Luster J; Zimmermann S; Blaser P
    Environ Sci Technol; 2005 Oct; 39(20):7761-7. PubMed ID: 16295834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and biological recovery of Lake Saudlandsvatn, a formerly highly acidified lake in southernmost Norway, in response to decreased acid deposition.
    Hesthagen T; Fjellheim A; Schartau AK; Wright RF; Saksgård R; Rosseland BO
    Sci Total Environ; 2011 Jul; 409(15):2908-16. PubMed ID: 21669327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments.
    Löfgren S; Aastrup M; Bringmark L; Hultberg H; Lewin-Pihlblad L; Lundin L; Karlsson GP; Thunholm B
    Ambio; 2011 Dec; 40(8):836-56. PubMed ID: 22201000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling past and future acidification of Swedish lakes.
    Moldan F; Cosby BJ; Wright RF
    Ambio; 2013 Sep; 42(5):577-86. PubMed ID: 23288615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different critical load approaches for assessing streamwater acid-sensitivity to broadleaf woodland expansion.
    Gagkas Z; Heal KV; Nisbet TR; Stuart N
    Sci Total Environ; 2010 Feb; 408(6):1235-44. PubMed ID: 20071010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting acidification recovery at the Hubbard Brook Experimental Forest, New Hampshire: evaluation of four models.
    Tominaga K; Aherne J; Watmough SA; Alveteg M; Cosby BJ; Driscoll CT; Posch M; Pourmokhtarian A
    Environ Sci Technol; 2010 Dec; 44(23):9003-9. PubMed ID: 21028800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen deposition contributes to soil acidification in tropical ecosystems.
    Lu X; Mao Q; Gilliam FS; Luo Y; Mo J
    Glob Chang Biol; 2014 Dec; 20(12):3790-801. PubMed ID: 24953639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Current status of surface water acidification in Northeast China].
    Xu GY; Kang RH; Luo Y; Duan L
    Huan Jing Ke Xue; 2013 May; 34(5):1695-9. PubMed ID: 23914517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The present is the key to the past, but what does the future hold for the recovery of surface waters from acidification?
    Helliwell RC; Simpson GL
    Water Res; 2010 May; 44(10):3166-80. PubMed ID: 20227743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge Province.
    Sullivan TJ; Cosby BJ; Jackson WA
    J Environ Manage; 2011 Nov; 92(11):2953-60. PubMed ID: 21816535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia.
    Sullivan TJ; Cosby BJ; Webb JR; Dennis RL; Bulger AJ; Deviney FA
    Environ Monit Assess; 2008 Feb; 137(1-3):85-99. PubMed ID: 17492359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling future acidification and fish populations in Norwegian surface waters.
    Larssen T; Cosby BJ; Lund E; Wright RF
    Environ Sci Technol; 2010 Jul; 44(14):5345-51. PubMed ID: 20568744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrospective analyses and future predictions of snowmelt-induced acidification: example from a heavily impacted stream in the Czech Republic.
    Laudon H; Hruska J; Köhler S; Krám P
    Environ Sci Technol; 2005 May; 39(9):3197-202. PubMed ID: 15926570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.