BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16295905)

  • 1. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil.
    Huang Y; Tao S; Chen YJ
    J Environ Sci (China); 2005; 17(2):276-80. PubMed ID: 16295905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.
    Citterio S; Prato N; Fumagalli P; Aina R; Massa N; Santagostino A; Sgorbati S; Berta G
    Chemosphere; 2005 Mar; 59(1):21-9. PubMed ID: 15698640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils.
    Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW
    Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of rhizospheric environment of VA-mycorrhizal plants on forms of Cu, Zn, Pb and Cd in polluted soil].
    Huang Y; Chen Y; Tao S
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):431-4. PubMed ID: 11767649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere].
    Huang Y; Chen Y; Tao S
    Ying Yong Sheng Tai Xue Bao; 2002 Jul; 13(7):859-62. PubMed ID: 12385219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil.
    Wang FY; Lin XG; Yin R
    Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae.
    Yu Y; Zhang S; Huang H; Luo L; Wen B
    J Agric Food Chem; 2009 May; 57(9):3695-701. PubMed ID: 19296577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of atrazine and cadmium from soil by maize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomus etunicatum.
    Huang H; Zhang S; Chen BD; Wu N; Shan XQ; Christy P
    J Agric Food Chem; 2006 Dec; 54(25):9377-82. PubMed ID: 17147421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.
    Andrade SA; Silveira AP; Mazzafera P
    Sci Total Environ; 2010 Oct; 408(22):5381-91. PubMed ID: 20716461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the phytotoxicity of contaminated sediments deposited "on soil": II. Impact of water draining from deposits on the development and physiological status of neighbouring plants at growth stage.
    Bedell JP; Briant A; Delolme C; Lassabatère L; Perrodin Y
    Chemosphere; 2006 Mar; 62(8):1311-23. PubMed ID: 16169046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge.
    He MM; Tian GM; Liang XQ
    J Hazard Mater; 2009 Apr; 163(2-3):671-7. PubMed ID: 18703282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenanthrene and pyrene uptake by arbuscular mycorrhizal maize and their dissipation in soil.
    Wu FY; Yu XZ; Wu SC; Lin XG; Wong MH
    J Hazard Mater; 2011 Mar; 187(1-3):341-7. PubMed ID: 21282002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils.
    Cattani I; Fragoulis G; Boccelli R; Capri E
    Chemosphere; 2006 Sep; 64(11):1972-9. PubMed ID: 16481029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arbuscular mycorrhiza and heavy metal tolerance.
    Hildebrandt U; Regvar M; Bothe H
    Phytochemistry; 2007 Jan; 68(1):139-46. PubMed ID: 17078985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial activity related to N cycling in the rhizosphere of maize stressed by heavy metals.
    Yang Y; Chen YX; Tian GM; Zhang ZJ
    J Environ Sci (China); 2005; 17(3):448-51. PubMed ID: 16083122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.
    Azcón R; Medina A; Roldán A; Biró B; Vivas A
    Chemosphere; 2009 Apr; 75(3):327-34. PubMed ID: 19185328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.
    Munier-Lamy C; Deneux-Mustin S; Mustin C; Merlet D; Berthelin J; Leyval C
    J Environ Radioact; 2007; 97(2-3):148-58. PubMed ID: 17544553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.