These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 16296748)
21. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Li Y; Kröger M; Liu WK Biomaterials; 2014 Oct; 35(30):8467-78. PubMed ID: 25002266 [TBL] [Abstract][Full Text] [Related]
22. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Minimol PF; Paul W; Sharma CP Carbohydr Polym; 2013 Jun; 95(1):1-8. PubMed ID: 23618232 [TBL] [Abstract][Full Text] [Related]
23. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Li X; Guo S; Zhu C; Zhu Q; Gan Y; Rantanen J; Rahbek UL; Hovgaard L; Yang M Biomaterials; 2013 Dec; 34(37):9678-87. PubMed ID: 24016855 [TBL] [Abstract][Full Text] [Related]
24. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. Yildiz HM; McKelvey CA; Marsac PJ; Carrier RL J Drug Target; 2015; 23(7-8):768-74. PubMed ID: 26453172 [TBL] [Abstract][Full Text] [Related]
25. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
26. UEA I-bearing nanoparticles for brain delivery following intranasal administration. Gao X; Chen J; Tao W; Zhu J; Zhang Q; Chen H; Jiang X Int J Pharm; 2007 Aug; 340(1-2):207-15. PubMed ID: 17499948 [TBL] [Abstract][Full Text] [Related]
28. Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Su Z; Xing L; Chen Y; Xu Y; Yang F; Zhang C; Ping Q; Xiao Y Mol Pharm; 2014 Jun; 11(6):1823-34. PubMed ID: 24779677 [TBL] [Abstract][Full Text] [Related]
29. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization. Shahnaz G; Vetter A; Barthelmes J; Rahmat D; Laffleur F; Iqbal J; Perera G; Schlocker W; Dünnhaput S; Augustijns P; Bernkop-Schnürch A Int J Pharm; 2012 May; 428(1-2):164-70. PubMed ID: 22421322 [TBL] [Abstract][Full Text] [Related]
30. Concanavalin A-conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes. Shao X; Liu Q; Zhang C; Zheng X; Chen J; Zha Y; Qian Y; Zhang X; Zhang Q; Jiang X J Microencapsul; 2013; 30(8):780-6. PubMed ID: 23631383 [TBL] [Abstract][Full Text] [Related]
31. In-vitro/in-vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration. Singh G; Pai RS J Pharm Pharmacol; 2014 Aug; 66(8):1062-76. PubMed ID: 24779896 [TBL] [Abstract][Full Text] [Related]
32. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. Hama S; Itakura S; Nakai M; Nakayama K; Morimoto S; Suzuki S; Kogure K J Control Release; 2015 May; 206():67-74. PubMed ID: 25770398 [TBL] [Abstract][Full Text] [Related]
33. Selegiline-functionalized, PEGylated poly(alkyl cyanoacrylate) nanoparticles: Investigation of interaction with amyloid-β peptide and surface reorganization. Le Droumaguet B; Souguir H; Brambilla D; Verpillot R; Nicolas J; Taverna M; Couvreur P; Andrieux K Int J Pharm; 2011 Sep; 416(2):453-60. PubMed ID: 21251960 [TBL] [Abstract][Full Text] [Related]
34. Mucoadhesion, hydration and rheological properties of non-aqueous delivery systems (NADS) for the oral cavity. Zaman MA; Martin GP; Rees GD J Dent; 2008 May; 36(5):351-9. PubMed ID: 18343013 [TBL] [Abstract][Full Text] [Related]
35. The performance of nanocarriers for transmucosal drug delivery. Csaba N; Garcia-Fuentes M; Alonso MJ Expert Opin Drug Deliv; 2006 Jul; 3(4):463-78. PubMed ID: 16822222 [TBL] [Abstract][Full Text] [Related]
36. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Shan W; Zhu X; Liu M; Li L; Zhong J; Sun W; Zhang Z; Huang Y ACS Nano; 2015 Mar; 9(3):2345-56. PubMed ID: 25658958 [TBL] [Abstract][Full Text] [Related]
37. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration. Wang G; Kucharski C; Lin X; Uludağ H J Drug Target; 2010 Sep; 18(8):611-26. PubMed ID: 20158316 [TBL] [Abstract][Full Text] [Related]
38. Effects of poly(ethylene glycol) grafting density on the tumor targeting efficacy of nanoparticles with ligand modification. Zhang S; Tang C; Yin C Drug Deliv; 2015 Feb; 22(2):182-90. PubMed ID: 24215373 [TBL] [Abstract][Full Text] [Related]
39. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Wang X; Chi N; Tang X Eur J Pharm Biopharm; 2008 Nov; 70(3):735-40. PubMed ID: 18684400 [TBL] [Abstract][Full Text] [Related]
40. PLA-PEG particles as nasal protein carriers: the influence of the particle size. Vila A; Sánchez A; Evora C; Soriano I; McCallion O; Alonso MJ Int J Pharm; 2005 Mar; 292(1-2):43-52. PubMed ID: 15725552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]