BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16296883)

  • 1. High-LET irradiation of a DNA-binding protein: protein-protein and DNA-protein crosslinks.
    Culard F; Bouffard S; Charlier M
    Radiat Res; 2005 Dec; 164(6):774-80. PubMed ID: 16296883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of a DNA-binding protein to radiation-induced oxidative stress.
    Culard F; Gervais A; de Vuyst G; Spotheim-Maurizot M; Charlier M
    J Mol Biol; 2003 May; 328(5):1185-95. PubMed ID: 12729751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-specific binding recognition of a methanogen chromosomal protein.
    Paradinas C; Gervais A; Maurizot JC; Culard F
    Eur J Biochem; 1998 Oct; 257(2):372-9. PubMed ID: 9826182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometry of the binding of chromosomal protein MC1 from the archaebacterium, Methanosarcina spp. CHTI55, to DNA.
    Culard F; Laine B; Sautière P; Maurizot JC
    FEBS Lett; 1993 Jan; 315(3):335-9. PubMed ID: 8422927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New protein-DNA complexes in archaea: a small monomeric protein induces a sharp V-turn DNA structure.
    Loth K; Largillière J; Coste F; Culard F; Landon C; Castaing B; Delmas AF; Paquet F
    Sci Rep; 2019 Oct; 9(1):14253. PubMed ID: 31582767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential binding of the archaebacterial histone-like MC1 protein to negatively supercoiled DNA minicircles.
    Teyssier C; Toulmé F; Touzel JP; Gervais A; Maurizot JC; Culard F
    Biochemistry; 1996 Jun; 35(24):7954-8. PubMed ID: 8672498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation-sensitive residues mediate the DNA bending abilities of the architectural MC1 protein.
    Buré C; Goffinont S; Delmas AF; Cadene M; Culard F
    J Mol Biol; 2008 Feb; 376(1):120-30. PubMed ID: 18155237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes of DNA minicircles upon the binding of the archaebacterial histone-like protein MC1.
    Toulmé F; Le Cam E; Teyssier C; Delain E; Sautière P; Maurizot JC; Culard F
    J Biol Chem; 1995 Mar; 270(11):6286-91. PubMed ID: 7890766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atypical recognition of particular DNA sequences by the archaeal chromosomal MC1 protein.
    De Vuyst G; Aci S; Genest D; Culard F
    Biochemistry; 2005 Aug; 44(30):10369-77. PubMed ID: 16042414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron spin resonance study of DNA irradiated with an argon-ion beam: evidence for formation of sugar phosphate backbone radicals.
    Becker D; Bryant-Friedrich A; Trzasko C; Sevilla MD
    Radiat Res; 2003 Aug; 160(2):174-85. PubMed ID: 12859228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea.
    Paquet F; Delalande O; Goffinont S; Culard F; Loth K; Asseline U; Castaing B; Landon C
    PLoS One; 2014; 9(2):e88809. PubMed ID: 24558431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the chromosomal protein MC1 from the thermophilic archaebacterium Methanosarcina sp. CHTI 55 and its effect on the thermal stability of DNA.
    Chartier F; Laine B; Sautiere P
    Biochim Biophys Acta; 1988 Nov; 951(1):149-56. PubMed ID: 3142520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the DNA-interacting region of the archaebacterial chromosomal protein MC1. Photocrosslinks with 5-bromouracil-substituted DNA.
    Katouzian-Safadi M; Laine B; Chartier F; Cremet JY; Belaiche D; Sautiere P; Charlier M
    Nucleic Acids Res; 1991 Sep; 19(18):4937-41. PubMed ID: 1923761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical shifts assignments of the archaeal MC1 protein and a strongly bent 15 base pairs DNA duplex in complex.
    Loth K; Landon C; Paquet F
    Biomol NMR Assign; 2015 Apr; 9(1):215-7. PubMed ID: 25212183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Track structure in DNA irradiated with heavy ions.
    Bowman MK; Becker D; Sevilla MD; Zimbrick JD
    Radiat Res; 2005 Apr; 163(4):447-54. PubMed ID: 15799701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA damage and repair in oncogenic transformation by heavy ion radiation.
    Yang TC; Mei M; George KA; Craise LM
    Adv Space Res; 1996; 18(1-2):149-58. PubMed ID: 11538955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron spin resonance of DNA irradiated with a heavy-ion beam ([16]O[8+]): evidence for damage to the deoxyribose phosphate backbone.
    Becker D; Razskazovskii Y; Callaghan MU; Sevilla MD
    Radiat Res; 1996 Oct; 146(4):361-8. PubMed ID: 8927707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological characterization of low-energy ions with high-energy deposition on human cells.
    Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA
    Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin organization contributes to non-randomly distributed double-strand breaks after exposure to high-LET radiation.
    Radulescu I; Elmroth K; Stenerlöw B
    Radiat Res; 2004 Jan; 161(1):1-8. PubMed ID: 14680402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A higher micronucleus yield in B-versus T-cells after low-dose gamma-irradiation is not linked with defective Ku86 protein.
    Vral A; Thierens H; Bryant P; De Ridder L
    Int J Radiat Biol; 2001 Mar; 77(3):329-39. PubMed ID: 11258847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.