These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16296884)

  • 1. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae.
    Singh RK; Krishna M
    Radiat Res; 2005 Dec; 164(6):781-90. PubMed ID: 16296884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA damage-inducible and RAD52-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae.
    Moore CW; McKoy J; Dardalhon M; Davermann D; Martinez M; Averbeck D
    Genetics; 2000 Mar; 154(3):1085-99. PubMed ID: 10757755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae.
    Lettier G; Feng Q; de Mayolo AA; Erdeniz N; Reid RJ; Lisby M; Mortensen UH; Rothstein R
    PLoS Genet; 2006 Nov; 2(11):e194. PubMed ID: 17096599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DNA-damage signature in Saccharomyces cerevisiae is associated with single-strand breaks in DNA.
    Fry RC; DeMott MS; Cosgrove JP; Begley TJ; Samson LD; Dedon PC
    BMC Genomics; 2006 Dec; 7():313. PubMed ID: 17163986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and genetic analysis of the Saccharomyces cerevisiae RNC1/TRM2: evidences for its involvement in DNA double-strand break repair.
    Choudhury SA; Asefa B; Webb A; Ramotar D; Chow TY
    Mol Cell Biochem; 2007 Jun; 300(1-2):215-26. PubMed ID: 17205207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light.
    Hishida T; Kubota Y; Carr AM; Iwasaki H
    Nature; 2009 Jan; 457(7229):612-5. PubMed ID: 19079240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
    Gangavarapu V; Prakash S; Prakash L
    Mol Cell Biol; 2007 Nov; 27(21):7758-64. PubMed ID: 17785441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing.
    Storici F; Snipe JR; Chan GK; Gordenin DA; Resnick MA
    Mol Cell Biol; 2006 Oct; 26(20):7645-57. PubMed ID: 16908537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Rad52 recombination activity by double-strand break-induced SUMO modification.
    Sacher M; Pfander B; Hoege C; Jentsch S
    Nat Cell Biol; 2006 Nov; 8(11):1284-90. PubMed ID: 17013376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres.
    Pike BL; Heierhorst J
    Mol Cell Biol; 2007 Sep; 27(18):6532-45. PubMed ID: 17636027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair.
    Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV
    Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes.
    Dong Z; Fasullo M
    Nucleic Acids Res; 2003 May; 31(10):2576-85. PubMed ID: 12736307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells.
    Galli A; Schiestl RH
    Genetics; 1998 Jul; 149(3):1235-50. PubMed ID: 9649517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases.
    Vance JR; Wilson TE
    Mol Cell Biol; 2001 Nov; 21(21):7191-8. PubMed ID: 11585902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of DNA double-strand breaks induced in Saccharomyces cerevisiae using different gamma-ray dose-rates: a pulsed-field gel electrophoresis analysis.
    Dardalhon M; Nohturfft A; Meniel V; Averbeck D
    Int J Radiat Biol; 1994 Mar; 65(3):307-14. PubMed ID: 7908309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.
    Letavayová L; Marková E; Hermanská K; Vlcková V; Vlasáková D; Chovanec M; Brozmanová J
    DNA Repair (Amst); 2006 May; 5(5):602-10. PubMed ID: 16515894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination.
    Silva S; Altmannova V; Eckert-Boulet N; Kolesar P; Gallina I; Hang L; Chung I; Arneric M; Zhao X; Buron LD; Mortensen UH; Krejci L; Lisby M
    DNA Repair (Amst); 2016 Jun; 42():11-25. PubMed ID: 27130983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multistep genomic screen identifies new genes required for repair of DNA double-strand breaks in Saccharomyces cerevisiae.
    McKinney JS; Sethi S; Tripp JD; Nguyen TN; Sanderson BA; Westmoreland JW; Resnick MA; Lewis LK
    BMC Genomics; 2013 Apr; 14():251. PubMed ID: 23586741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways.
    Friedl AA; Kiechle M; Fellerhoff B; Eckardt-Schupp F
    Genetics; 1998 Mar; 148(3):975-88. PubMed ID: 9539418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.