BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 16297217)

  • 1. A probabilistic transmission dynamic model to assess indoor airborne infection risks.
    Liao CM; Chang CF; Liang HM
    Risk Anal; 2005 Oct; 25(5):1097-107. PubMed ID: 16297217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive models of control strategies involved in containing indoor airborne infections.
    Chen SC; Chang CF; Liao CM
    Indoor Air; 2006 Dec; 16(6):469-81. PubMed ID: 17100668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection.
    Chen SC; Chio CP; Jou LJ; Liao CM
    Indoor Air; 2009 Oct; 19(5):401-13. PubMed ID: 19659895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic indoor transmission modeling for influenza (sub)type viruses.
    Chen SC; Liao CM
    J Infect; 2010 Jan; 60(1):26-35. PubMed ID: 19818365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the transmission of airborne infections in enclosed spaces.
    Noakes CJ; Beggs CB; Sleigh PA; Kerr KG
    Epidemiol Infect; 2006 Oct; 134(5):1082-91. PubMed ID: 16476170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling control measures to reduce the impact of pandemic influenza among schoolchildren.
    Chen SC; Liao CM
    Epidemiol Infect; 2008 Aug; 136(8):1035-45. PubMed ID: 17850689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration.
    Rudnick SN; Milton DK
    Indoor Air; 2003 Sep; 13(3):237-45. PubMed ID: 12950586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing coughing-induced influenza droplet transmission and implications for infection risk control.
    Cheng YH; Wang CH; You SH; Hsieh NH; Chen WY; Chio CP; Liao CM
    Epidemiol Infect; 2016 Jan; 144(2):333-45. PubMed ID: 26211781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of airborne transmission of the severe acute respiratory syndrome virus.
    Yu IT; Li Y; Wong TW; Tam W; Chan AT; Lee JH; Leung DY; Ho T
    N Engl J Med; 2004 Apr; 350(17):1731-9. PubMed ID: 15102999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.
    Brunekreef B; Beelen R; Hoek G; Schouten L; Bausch-Goldbohm S; Fischer P; Armstrong B; Hughes E; Jerrett M; van den Brandt P
    Res Rep Health Eff Inst; 2009 Mar; (139):5-71; discussion 73-89. PubMed ID: 19554969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data.
    Cauchemez S; Carrat F; Viboud C; Valleron AJ; Boƫlle PY
    Stat Med; 2004 Nov; 23(22):3469-87. PubMed ID: 15505892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infection risk in gyms during physical exercise.
    Andrade A; Dominski FH; Pereira ML; de Liz CM; Buonanno G
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19675-19686. PubMed ID: 29736645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining environmental assessment and contact investigations to make tuberculosis screening decisions.
    Pankhurst LJ; Anaraki S; Lai KM
    Int J Tuberc Lung Dis; 2012 Aug; 16(8):1023-9. PubMed ID: 22691609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARS-CoV-2 airborne infection probability estimated by using indoor carbon dioxide.
    Iwamura N; Tsutsumi K
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):79227-79240. PubMed ID: 37286835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk assessment of airborne infectious diseases in aircraft cabins.
    Gupta JK; Lin CH; Chen Q
    Indoor Air; 2012 Oct; 22(5):388-95. PubMed ID: 22313168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The risk of airborne influenza transmission in passenger cars.
    Knibbs LD; Morawska L; Bell SC
    Epidemiol Infect; 2012 Mar; 140(3):474-8. PubMed ID: 21733264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens.
    Li Y; Duan S; Yu IT; Wong TW
    Indoor Air; 2005 Apr; 15(2):96-111. PubMed ID: 15737152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.
    Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T
    Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A probabilistic transmission model to assess infection risk from Mycobacterium tuberculosis in commercial passenger trains.
    Chen SC; Liao CM; Li SS; You SH
    Risk Anal; 2011 Jun; 31(6):930-9. PubMed ID: 21175727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of tuberculosis risk on a commercial airliner.
    Ko G; Thompson KM; Nardell EA
    Risk Anal; 2004 Apr; 24(2):379-88. PubMed ID: 15078308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.