BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 16297432)

  • 1. Formation of hazardous by-products resulting from the irradiation of natural organic matter: comparison between UV and VUV irradiation.
    Buchanan W; Roddick F; Porter N
    Chemosphere; 2006 May; 63(7):1130-41. PubMed ID: 16297432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of VUV pre-treated natural organic matter by biologically activated carbon columns.
    Buchanan W; Roddick F; Porter N
    Water Res; 2008 Jul; 42(13):3335-42. PubMed ID: 18502470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control.
    Kim HC; Yu MJ
    Water Res; 2005 Nov; 39(19):4779-89. PubMed ID: 16253305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralization and biodegradability enhancement of natural organic matter by ozone-VUV in comparison with ozone, VUV, ozone-UV, and UV: effects of pH and ozone dose.
    Ratpukdi T; Siripattanakul S; Khan E
    Water Res; 2010 Jun; 44(11):3531-43. PubMed ID: 20417950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane.
    Kim MH; Yu MJ
    Environ Res; 2005 Jan; 97(1):116-23. PubMed ID: 15476741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variations of disinfection by-product precursors profile and their removal through surface water treatment plants.
    Uyak V; Ozdemir K; Toroz I
    Sci Total Environ; 2008 Feb; 390(2-3):417-24. PubMed ID: 17997473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of alum coagulation on the character, biodegradability and disinfection by-product formation potential of reservoir natural organic matter (NOM) fractions.
    Soh YC; Roddick F; van Leeuwen J
    Water Sci Technol; 2008; 58(6):1173-9. PubMed ID: 18845853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and biological oxidation of NOM surrogates and effect on HAA formation.
    Bond T; Goslan EH; Jefferson B; Roddick F; Fan L; Parsons SA
    Water Res; 2009 Jun; 43(10):2615-22. PubMed ID: 19375771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation.
    Yoon SH; Lee JH; Oh S; Yang JE
    Water Res; 2008 Jul; 42(13):3455-63. PubMed ID: 18514252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of natural organic matter in surface water using vacuum-UV irradiation.
    Imoberdorf G; Mohseni M
    J Hazard Mater; 2011 Feb; 186(1):240-6. PubMed ID: 21122985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved vacuum-UV (VUV)-initiated photomineralization of organic compounds in water with a xenon excimer flow-through photoreactor (Xe2* lamp, 172 nm) containing an axially centered ceramic oxygenator.
    Oppenländer T; Walddörfer C; Burgbacher J; Kiermeier M; Lachner K; Weinschrott H
    Chemosphere; 2005 Jul; 60(3):302-9. PubMed ID: 15924948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of by-product formation during the irradiation of drinking water with a medium pressure lamp.
    Couvert A; Grandguillot G; Féliers C
    Environ Technol; 2007 Aug; 28(8):841-51. PubMed ID: 17879843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of UV/H(2)O(2) advanced oxidation on chemical characteristics and chlorine reactivity of surface water natural organic matter.
    Sarathy S; Mohseni M
    Water Res; 2010 Jul; 44(14):4087-96. PubMed ID: 20554308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of changes in metal toxicity following exposure of water with high dissolved organic carbon content to solar, UV-B and UV-A radiation.
    Winch S; Lean D
    Photochem Photobiol; 2005; 81(6):1469-80. PubMed ID: 15971963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of UV/H2O2 treatment on biofilm formation potential.
    Metz DH; Reynolds K; Meyer M; Dionysiou DD
    Water Res; 2011 Jan; 45(2):497-508. PubMed ID: 20932545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light.
    Kutschera K; Börnick H; Worch E
    Water Res; 2009 May; 43(8):2224-32. PubMed ID: 19303132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of advanced oxidation processes for the removal of natural organic matter.
    Lamsal R; Walsh ME; Gagnon GA
    Water Res; 2011 May; 45(10):3263-9. PubMed ID: 21496860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes.
    Goslan EH; Gurses F; Banks J; Parsons SA
    Chemosphere; 2006 Nov; 65(7):1113-9. PubMed ID: 16765416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of UV and VUV pretreated natural organic matter from drinking water.
    Buchanan W; Roddick F; Porter N; Drikas M
    Environ Sci Technol; 2005 Jun; 39(12):4647-54. PubMed ID: 16047805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of natural organic matter from drinking water by advanced oxidation processes.
    Matilainen A; Sillanpää M
    Chemosphere; 2010 Jun; 80(4):351-65. PubMed ID: 20494399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.