These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1629770)

  • 1. Local serotonergic modulation of calcium-dependent potassium channels controls intersegmental coordination in the lamprey spinal cord.
    Matsushima T; Grillner S
    J Neurophysiol; 1992 Jun; 67(6):1683-90. PubMed ID: 1629770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord.
    Matsushima T; Grillner S
    J Neurophysiol; 1992 Feb; 67(2):373-88. PubMed ID: 1569465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.
    el Manira A; Tegnér J; Grillner S
    J Neurophysiol; 1994 Oct; 72(4):1852-61. PubMed ID: 7823105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extent and role of multisegmental coupling in the Lamprey spinal locomotor pattern generator.
    Miller WL; Sigvardt KA
    J Neurophysiol; 2000 Jan; 83(1):465-76. PubMed ID: 10634888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition.
    Kotaleski JH; Grillner S; Lansner A
    Biol Cybern; 1999 Oct; 81(4):317-30. PubMed ID: 10541935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in endogenous 5-hydroxytryptamine levels modulates the central network underlying locomotion in the lamprey spinal cord.
    Christenson J; Franck J; Grillner S
    Neurosci Lett; 1989 May; 100(1-3):188-92. PubMed ID: 2668801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic modulation of the locomotor network in the lamprey spinal cord.
    Quinlan KA; Placas PG; Buchanan JT
    J Neurophysiol; 2004 Sep; 92(3):1536-48. PubMed ID: 15152024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spinal 5-HT system contributes to the generation of fictive locomotion in lamprey.
    Zhang W; Grillner S
    Brain Res; 2000 Oct; 879(1-2):188-92. PubMed ID: 11011021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neuronal correlate of locomotion in fish. "Fictive swimming" induced in an in vitro preparation of the lamprey spinal cord.
    Cohen AH; Wallén P
    Exp Brain Res; 1980; 41(1):11-8. PubMed ID: 7461065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of local oscillator frequency on intersegmental coordination in the lamprey locomotor CPG: theory and experiment.
    Sigvardt KA; Williams TL
    J Neurophysiol; 1996 Dec; 76(6):4094-103. PubMed ID: 8985903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2014 Jul; 112(1):30-8. PubMed ID: 24740857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of serotonin on fictive locomotion coordinated by a neural network deprived of NMDA receptor-mediated cellular properties.
    Schotland JL; Grillner S
    Exp Brain Res; 1993; 93(3):391-8. PubMed ID: 8100198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rostrocaudal distribution of 5-HT innervation in the lamprey spinal cord and differential effects of 5-HT on fictive locomotion.
    Zhang W; Pombal MA; el Manira A; Grillner S
    J Comp Neurol; 1996 Oct; 374(2):278-90. PubMed ID: 8906499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons.
    Matsushima T; Tegnér J; Hill RH; Grillner S
    J Neurophysiol; 1993 Dec; 70(6):2606-19. PubMed ID: 8120601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The action of 5-HT on calcium-dependent potassium channels and on the spinal locomotor network in lamprey is mediated by 5-HT1A-like receptors.
    Wikström M; Hill R; Hellgren J; Grillner S
    Brain Res; 1995 Apr; 678(1-2):191-9. PubMed ID: 7620887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.