These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16297864)

  • 1. Reconstitution of beta-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase.
    Momoi K; Hofmann U; Schmid RD; Urlacher VB
    Biochem Biophys Res Commun; 2006 Jan; 339(1):331-6. PubMed ID: 16297864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily.
    Blasco F; Kauffmann I; Schmid RD
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):671-4. PubMed ID: 14727092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of bacterial beta-carotene 3,3'-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli.
    Choi SK; Matsuda S; Hoshino T; Peng X; Misawa N
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1238-46. PubMed ID: 16614859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel electron transport system for thermostable CYP175A1 from Thermus thermophilus HB27.
    Mandai T; Fujiwara S; Imaoka S
    FEBS J; 2009 Apr; 276(8):2416-29. PubMed ID: 19348026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and engineering of a thermostable self-sufficient cytochrome P450.
    Mandai T; Fujiwara S; Imaoka S
    Biochem Biophys Res Commun; 2009 Jun; 384(1):61-5. PubMed ID: 19389383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius.
    Shrestha P; Oh TJ; Sohng JK
    Biotechnol Lett; 2008 Jun; 30(6):1101-6. PubMed ID: 18259876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic basis of the thermostability of CYP175A1 from Thermus thermophilus.
    Behera RK; Mazumdar S
    Int J Biol Macromol; 2010 May; 46(4):412-8. PubMed ID: 20138909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo interactions of ferredoxin-NADP+ reductases in Pseudomonas putida.
    Yeom J; Jeon CO; Madsen EL; Park W
    J Biochem; 2009 Apr; 145(4):481-91. PubMed ID: 19122206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Self-Sufficient Cytochrome P450 Containing Multiple Auxiliary Proteins Demonstrates Improved Monooxygenase Activity.
    Haga T; Hirakawa H; Nagamune T
    Biotechnol J; 2018 Dec; 13(12):e1800088. PubMed ID: 30039932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls.
    Alvarez V; Rodríguez-Sáiz M; de la Fuente JL; Gudiña EJ; Godio RP; Martín JF; Barredo JL
    Fungal Genet Biol; 2006 Apr; 43(4):261-72. PubMed ID: 16455271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterization of a functional putidaredoxin reductase-putidaredoxin covalent complex.
    Churbanova IY; Poulos TL; Sevrioukova IF
    Biochemistry; 2010 Jan; 49(1):58-67. PubMed ID: 19954240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans.
    Bell SG; Dale A; Rees NH; Wong LL
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):163-75. PubMed ID: 19779713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophilic cytochrome P450 enzymes.
    Nishida CR; Ortiz de Montellano PR
    Biochem Biophys Res Commun; 2005 Dec; 338(1):437-45. PubMed ID: 16139791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cyanobacterial beta-carotene ketolase and hydroxylase genes in Escherichia coli, and their application for astaxanthin biosynthesis.
    Scaife MA; Burja AM; Wright PC
    Biotechnol Bioeng; 2009 Aug; 103(5):944-55. PubMed ID: 19365869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavodoxin and NADPH-flavodoxin reductase from Escherichia coli support bovine cytochrome P450c17 hydroxylase activities.
    Jenkins CM; Waterman MR
    J Biol Chem; 1994 Nov; 269(44):27401-8. PubMed ID: 7961651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, purification and characterization of two Clostridium acetobutylicum flavodoxins: potential electron transfer partners for CYP152A2.
    Malca SH; Girhard M; Schuster S; Dürre P; Urlacher VB
    Biochim Biophys Acta; 2011 Jan; 1814(1):257-64. PubMed ID: 20601217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca.
    Schallmey A; den Besten G; Teune IG; Kembaren RF; Janssen DB
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1475-85. PubMed ID: 21057946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.
    Csernetics Á; Tóth E; Farkas A; Nagy G; Bencsik O; Vágvölgyi C; Papp T
    World J Microbiol Biotechnol; 2015 Feb; 31(2):321-36. PubMed ID: 25504221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic routes of hydroxylated carotenoids (xanthophylls) in Marchantia polymorpha, and production of novel and rare xanthophylls through pathway engineering in Escherichia coli.
    Takemura M; Maoka T; Misawa N
    Planta; 2015 Mar; 241(3):699-710. PubMed ID: 25467956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a hybrid biotransformation system for cytochrome P450sca-2 in Escherichia coli.
    Ba L; Li P; Zhang H; Duan Y; Lin Z
    Biotechnol J; 2013 Jul; 8(7):785-93. PubMed ID: 23744742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.