BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 16297966)

  • 1. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil.
    Chen BD; Zhu YG; Smith FA
    Chemosphere; 2006 Mar; 62(9):1464-73. PubMed ID: 16084565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China.
    Wang HB; Wong MH; Lan CY; Baker AJ; Qin YR; Shu WS; Chen GZ; Ye ZH
    Environ Pollut; 2007 Jan; 145(1):225-33. PubMed ID: 16777301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea).
    Salido AL; Hasty KL; Lim JM; Butcher DJ
    Int J Phytoremediation; 2003; 5(2):89-103. PubMed ID: 12929493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area.
    Wei X; Zhou Y; Tsang DCW; Song L; Zhang C; Yin M; Liu J; Xiao T; Zhang G; Wang J
    J Hazard Mater; 2020 Apr; 388():121756. PubMed ID: 31818671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pteris umbrosa R. Br. as an arsenic hyperaccumulator: accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata.
    Koller CE; Patrick JW; Rose RJ; Offler CE; MacFarlane GR
    Chemosphere; 2007 Jan; 66(7):1256-63. PubMed ID: 16934852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake.
    Tu C; Ma LQ
    J Environ Qual; 2002; 31(2):641-7. PubMed ID: 11931457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys.
    Wang HB; Ye ZH; Shu WS; Li WC; Wong MH; Lan CY
    Int J Phytoremediation; 2006; 8(1):1-11. PubMed ID: 16615304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil.
    An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB
    Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Cao X; Ma LQ; Tu C
    Environ Pollut; 2004; 128(3):317-25. PubMed ID: 14720474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L.
    Wu FY; Ye ZH; Wong MH
    Chemosphere; 2009 Aug; 76(9):1258-64. PubMed ID: 19535126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three new arsenic hyperaccumulating ferns.
    Srivastava M; Ma LQ; Santos JA
    Sci Total Environ; 2006 Jul; 364(1-3):24-31. PubMed ID: 16371231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study.
    Kohda YH; Endo G; Kitajima N; Sugawara K; Chien MF; Inoue C; Miyauchi K
    Sci Total Environ; 2022 Jul; 831():154830. PubMed ID: 35346712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing arsenic accumulation by Pteris vittata: a comparative field study at two sites.
    Wei CY; Sun X; Wang C; Wang WY
    Environ Pollut; 2006 Jun; 141(3):488-93. PubMed ID: 16236410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an ecotype of brake-fern, Pteris vittata, for arsenic tolerance and accumulation in plant biomass.
    Sarangi BK; Chakrabarti T
    Tsitol Genet; 2008; 42(5):16-31. PubMed ID: 19140437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT; Truong P; Mammucari R; Foster N
    Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.