BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16298240)

  • 1. Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain.
    Korolainen MA; Goldsteins G; Nyman TA; Alafuzoff I; Koistinaho J; Pirttilä T
    Neurobiol Aging; 2006 Jan; 27(1):42-53. PubMed ID: 16298240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of protein oxidation in Alzheimer's disease brain.
    Korolainen MA; Goldsteins G; Alafuzoff I; Koistinaho J; Pirttilä T
    Electrophoresis; 2002 Sep; 23(19):3428-33. PubMed ID: 12373773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosylation changes in Alzheimer's disease as revealed by a proteomic approach.
    Kanninen K; Goldsteins G; Auriola S; Alafuzoff I; Koistinaho J
    Neurosci Lett; 2004 Sep; 367(2):235-40. PubMed ID: 15331161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of oxidized RNAs in Alzheimer's disease.
    Shan X; Lin CL
    Neurobiol Aging; 2006 May; 27(5):657-62. PubMed ID: 15979765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD.
    Sultana R; Boyd-Kimball D; Poon HF; Cai J; Pierce WM; Klein JB; Merchant M; Markesbery WR; Butterfield DA
    Neurobiol Aging; 2006 Nov; 27(11):1564-76. PubMed ID: 16271804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer's disease.
    Perez-Gracia E; Blanco R; Carmona M; Carro E; Ferrer I
    Acta Neuropathol; 2009 Oct; 118(4):497-504. PubMed ID: 19597827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease.
    Wang J; Xiong S; Xie C; Markesbery WR; Lovell MA
    J Neurochem; 2005 May; 93(4):953-62. PubMed ID: 15857398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronically increased oxidative stress in fibroblasts from Alzheimer's disease patients causes early senescence and renders resistance to apoptosis by oxidative stress.
    Naderi J; Lopez C; Pandey S
    Mech Ageing Dev; 2006 Jan; 127(1):25-35. PubMed ID: 16188294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease.
    Mecocci P; MacGarvey U; Beal MF
    Ann Neurol; 1994 Nov; 36(5):747-51. PubMed ID: 7979220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer's disease.
    Aldred S; Bennett S; Mecocci P
    Clin Biochem; 2010 Feb; 43(3):267-71. PubMed ID: 19733555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach.
    Sultana R; Poon HF; Cai J; Pierce WM; Merchant M; Klein JB; Markesbery WR; Butterfield DA
    Neurobiol Dis; 2006 Apr; 22(1):76-87. PubMed ID: 16378731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrospinal fluid, serum and plasma protein oxidation in Alzheimer's disease.
    Korolainen MA; Pirttilä T
    Acta Neurol Scand; 2009 Jan; 119(1):32-8. PubMed ID: 18547271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased activity of mitochondrial aldehyde dehydrogenase (ALDH) in the putamen of individuals with Alzheimer's disease: a human postmortem study.
    Michel TM; Gsell W; Käsbauer L; Tatschner T; Sheldrick AJ; Neuner I; Schneider F; Grünblatt E; Riederer P
    J Alzheimers Dis; 2010; 19(4):1295-301. PubMed ID: 20061610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of neuronal lipofuscin in the superior temporal gyrus in Alzheimer's disease do not differ from non-diseased controls: a comparison with disease-related changes in the superior frontal gyrus.
    Mountjoy CQ; Dowson JH; Harrington C; Cairns MR; Wilton-Cox H
    Acta Neuropathol; 2005 May; 109(5):490-6. PubMed ID: 15759127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential damage in the frontal cortex with aging, sporadic and familial Alzheimer's disease.
    Leuba G; Vernay A; Zimmermann V; Saini K; Kraftsik R; Savioz A
    Brain Res Bull; 2009 Oct; 80(4-5):196-202. PubMed ID: 19559767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease.
    Abdul HM; Calabrese V; Calvani M; Butterfield DA
    J Neurosci Res; 2006 Aug; 84(2):398-408. PubMed ID: 16634066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer's disease brain.
    Kumar U; Patel SC
    Brain Res; 2007 Feb; 1131(1):187-96. PubMed ID: 17182012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease.
    Aliev G; Palacios HH; Walrafen B; Lipsitt AE; Obrenovich ME; Morales L
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1989-2004. PubMed ID: 19703659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Is the lesion produced by oxidation a central part in the pathogenesis of Alzheimer's disease?].
    Perry G; Smith MA
    Neurologia; 1999 Feb; 14(2):78-84. PubMed ID: 10100423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer's disease.
    Guidi I; Galimberti D; Lonati S; Novembrino C; Bamonti F; Tiriticco M; Fenoglio C; Venturelli E; Baron P; Bresolin N; Scarpini E
    Neurobiol Aging; 2006 Feb; 27(2):262-9. PubMed ID: 16399211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.