These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 16298475)
1. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. Costa RC; Lelis MF; Oliveira LC; Fabris JD; Ardisson JD; Rios RR; Silva CN; Lago RM J Hazard Mater; 2006 Feb; 129(1-3):171-8. PubMed ID: 16298475 [TBL] [Abstract][Full Text] [Related]
2. Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Moura FC; Araujo MH; Costa RC; Fabris JD; Ardisson JD; Macedo WA; Lago RM Chemosphere; 2005 Aug; 60(8):1118-23. PubMed ID: 15993160 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous degradation of the anticancer drugs 5-fluorouracil and cyclophosphamide using a heterogeneous photo-Fenton process based on copper-containing magnetites (Fe Emídio ES; Hammer P; Nogueira RFP Chemosphere; 2020 Feb; 241():124990. PubMed ID: 31604197 [TBL] [Abstract][Full Text] [Related]
4. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Nieto-Juarez JI; Kohn T Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031 [TBL] [Abstract][Full Text] [Related]
5. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Bokare AD; Choi W J Hazard Mater; 2014 Jun; 275():121-35. PubMed ID: 24857896 [TBL] [Abstract][Full Text] [Related]
6. [Catalyzed oxidation of catechol by the heterogeneous Fenton-like reaction of nano-Fe3O4-H2O2 system]. He J; Yang XF; Zhang WJ; Wang DS Huan Jing Ke Xue; 2013 May; 34(5):1773-81. PubMed ID: 23914527 [TBL] [Abstract][Full Text] [Related]
7. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. Xue X; Hanna K; Deng N J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810 [TBL] [Abstract][Full Text] [Related]
8. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides. Frierdich AJ; Catalano JG Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760 [TBL] [Abstract][Full Text] [Related]
9. Remarkable effect of Co substitution in magnetite on the reduction removal of Cr(VI) coupled with aqueous Fe(II): Improvement mechanism and Cr fate. Li Y; Wei G; Zhang C; Liang X; Chu W; He H; Stucki JW; Ma L; Lin X; Zhu J Sci Total Environ; 2019 Mar; 656():400-408. PubMed ID: 30513430 [TBL] [Abstract][Full Text] [Related]
10. Mn(II) Oxidation in Fenton and Fenton Type Systems: Identification of Reaction Efficiency and Reaction Products. van Genuchten CM; Peña J Environ Sci Technol; 2017 Mar; 51(5):2982-2991. PubMed ID: 28135801 [TBL] [Abstract][Full Text] [Related]
11. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles. Shi J; Ai Z; Zhang L Water Res; 2014 Aug; 59():145-53. PubMed ID: 24793112 [TBL] [Abstract][Full Text] [Related]
12. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance. Rusevova K; Kopinke FD; Georgi A J Hazard Mater; 2012 Nov; 241-242():433-40. PubMed ID: 23098995 [TBL] [Abstract][Full Text] [Related]
13. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants. Dos Santos Coelho F; Ardisson JD; Moura FC; Lago RM; Murad E; Fabris JD Chemosphere; 2008 Mar; 71(1):90-6. PubMed ID: 18061239 [TBL] [Abstract][Full Text] [Related]
14. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI). Costa RC; Moura FC; Oliveira PE; Magalhães F; Ardisson JD; Lago RM Chemosphere; 2010 Feb; 78(9):1116-20. PubMed ID: 20060564 [TBL] [Abstract][Full Text] [Related]
15. As³⁺ removal by Ca-Mn-Fe₃O₄ with and without H₂O₂: effects of calcium oxide in Ca-Mn-Fe₃O₄. Do SH; Jo YH; Park JY; Hong SH J Hazard Mater; 2014 Sep; 280():322-30. PubMed ID: 25179104 [TBL] [Abstract][Full Text] [Related]
16. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species. Sandström BE; Svoboda P; Granström M; Harms-Ringdahl M; Candeias LP Free Radic Biol Med; 1997; 23(5):744-53. PubMed ID: 9296451 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of uniform magnetite (Fe3O4) nanoparticles and micron cubes. Li X; Zhang F; Ma C; Saul E; He N J Nanosci Nanotechnol; 2012 Mar; 12(3):2939-42. PubMed ID: 22755146 [TBL] [Abstract][Full Text] [Related]
18. Decolorization of methyl orange by green rusts with hydrogen peroxide at neutral pH. Lin Y; Yang C; Xiu R; Wang J; Wei Y; Sun Y Water Sci Technol; 2014; 69(2):371-7. PubMed ID: 24473308 [TBL] [Abstract][Full Text] [Related]
19. Application of Fe2V4O13 as a new multi-metal heterogeneous Fenton-like catalyst for the degradation of organic pollutants. Zhang YY; Deng JH; He C; Huang SS; Tian SH; Xiong Y Environ Technol; 2010 Feb; 31(2):145-54. PubMed ID: 20391799 [TBL] [Abstract][Full Text] [Related]
20. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces. Walter M; Schenkeveld WDC; Geroldinger G; Gille L; Reissner M; Kraemer SM Part Fibre Toxicol; 2020 Jan; 17(1):3. PubMed ID: 31959185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]