These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16298534)

  • 1. Cys(x)His(y)-Zn2+ interactions: possibilities and limitations of a simple pairwise force field.
    Calimet N; Simonson T
    J Mol Graph Model; 2006 Mar; 24(5):404-11. PubMed ID: 16298534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cys(x)His(y)-Zn2+ interactions: thiol vs. thiolate coordination.
    Simonson T; Calimet N
    Proteins; 2002 Oct; 49(1):37-48. PubMed ID: 12211014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-electron calculations of the nucleation structures in metal-induced zinc-finger folding: role of the Peptide backbone.
    Dudev T; Lim C
    J Am Chem Soc; 2007 Oct; 129(41):12497-504. PubMed ID: 17883271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn protein simulations including charge transfer and local polarization effects.
    Sakharov DV; Lim C
    J Am Chem Soc; 2005 Apr; 127(13):4921-9. PubMed ID: 15796557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics.
    Koca J; Zhan CG; Rittenhouse RC; Ornstein RL
    J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the pK(a) of the four Zn2+-coordinating residues of the distal finger motif of the HIV-1 nucleocapsid protein: consequences on the binding of Zn2+.
    Bombarda E; Morellet N; Cherradi H; Spiess B; Bouaziz S; Grell E; Roques BP; Mély Y
    J Mol Biol; 2001 Jul; 310(3):659-72. PubMed ID: 11439030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-coupled folding of Cys2His2 zinc-finger.
    Li W; Zhang J; Wang J; Wang W
    J Am Chem Soc; 2008 Jan; 130(3):892-900. PubMed ID: 18163620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis.
    Elstner M; Cui Q; Munih P; Kaxiras E; Frauenheim T; Karplus M
    J Comput Chem; 2003 Apr; 24(5):565-81. PubMed ID: 12632471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors governing the protonation state of Zn-bound histidine in proteins: a DFT/CDM study.
    Lin YL; Lim C
    J Am Chem Soc; 2004 Mar; 126(8):2602-12. PubMed ID: 14982470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc binding in proteins and solution: a simple but accurate nonbonded representation.
    Stote RH; Karplus M
    Proteins; 1995 Sep; 23(1):12-31. PubMed ID: 8539245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions.
    Sakharov DV; Lim C
    J Comput Chem; 2009 Jan; 30(2):191-202. PubMed ID: 18566982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the force field parameters for phosphoimidazole and phosphohistidine.
    Kosinsky YA; Volynsky PE; Lagant P; Vergoten G; Suzuki E; Arseniev AS; Efremov RG
    J Comput Chem; 2004 Aug; 25(11):1313-21. PubMed ID: 15185324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine and histidine shuffling: mixing and matching cysteine and histidine residues in zinc finger proteins to afford different folds and function.
    Michalek JL; Besold AN; Michel SL
    Dalton Trans; 2011 Dec; 40(47):12619-32. PubMed ID: 21952363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent interactions involving histidine: the effect of charge on pi-pi stacking and T-shaped interactions with the DNA nucleobases.
    Churchill CD; Wetmore SD
    J Phys Chem B; 2009 Dec; 113(49):16046-58. PubMed ID: 19904910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors governing the protonation state of cysteines in proteins: an Ab initio/CDM study.
    Dudev T; Lim C
    J Am Chem Soc; 2002 Jun; 124(23):6759-66. PubMed ID: 12047197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-solvation of the Zn2+ ion-a case study.
    De S; Ali SM; Ali A; Gaikar VG
    Phys Chem Chem Phys; 2009 Oct; 11(37):8285-94. PubMed ID: 19756285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of aurothiomalate-Cys2His2 zinc finger interactions.
    Larabee JL; Hocker JR; Hanas JS
    Chem Res Toxicol; 2005 Dec; 18(12):1943-54. PubMed ID: 16359185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site.
    Brandt EG; Hellgren M; Brinck T; Bergman T; Edholm O
    Phys Chem Chem Phys; 2009 Feb; 11(6):975-83. PubMed ID: 19177216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to hide zinc in a small protein.
    Blindauer CA; Sadler PJ
    Acc Chem Res; 2005 Jan; 38(1):62-9. PubMed ID: 15654738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides.
    Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR
    J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.