These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 16298855)

  • 21. Biomechanical analysis of cages for posterior lumbar interbody fusion.
    Fantigrossi A; Galbusera F; Raimondi MT; Sassi M; Fornari M
    Med Eng Phys; 2007 Jan; 29(1):101-9. PubMed ID: 16563847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction: preliminary application on two cases with and without intraoperative neurological complications.
    Henao J; Aubin CÉ; Labelle H; Arnoux PJ
    Comput Methods Biomech Biomed Engin; 2016; 19(8):901-10. PubMed ID: 26324393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Clinical features of adolescent idiopathic scoliosis with thoracolumbar kyphosis and its surgical treatment].
    Yu KY; Zhang JG; Qiu GX; Wang YP; Shen JX; Zhao H; Weng XS; Zhao Y; Li SG; Yu B
    Zhonghua Wai Ke Za Zhi; 2009 May; 47(10):762-5. PubMed ID: 19615213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws.
    Wang X; Aubin CE; Crandall D; Labelle H
    Spine (Phila Pa 1976); 2011 Jan; 36(2):E95-E104. PubMed ID: 21228695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Neuromuscular deformity of the pelvis and its surgical treatment].
    Repko M; Krbec M; Chaloupka R; Tichý V; Sprláková-Puková A
    Acta Chir Orthop Traumatol Cech; 2008 Apr; 75(2):117-22. PubMed ID: 18454916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Spinal instrumentation, source of progress, but also revealing pitfalls].
    Dubousset J
    Bull Acad Natl Med; 2003; 187(3):523-33. PubMed ID: 14556467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Major scoliosis, over 100 degrees, in adults. 183 surgically treated cases].
    Stagnara P; Fleury D; Fauchet R; Mazoyer D; Biot B; Vauzelle C; Jouvinroux P
    Rev Chir Orthop Reparatrice Appar Mot; 1975 Mar; 61(2):101-22. PubMed ID: 127344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical basis of optimal scoliosis surgical correction.
    Ghista DN; Viviani GR; Subbaraj K; Lozada PJ; Srinivasan TM; Barnes G
    J Biomech; 1988; 21(2):77-88. PubMed ID: 3350831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy expenditure during exercise on a treadmill before and after surgical correction of spinal deformities.
    Kumano K; Miyashita H; Tanaka T; Shimode M; Mori Y; Mikami H
    Nihon Seikeigeka Gakkai Zasshi; 1986 Apr; 60(4):439-48. PubMed ID: 3734529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A physically based trunk soft tissue modeling for scoliosis surgery planning systems.
    Assi KC; Grenier S; Parent S; Labelle H; Cheriet F
    Comput Med Imaging Graph; 2015 Mar; 40():217-28. PubMed ID: 25465069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a MEMS-based sensor array to characterise in situ loads during scoliosis correction surgery.
    Benfield D; Lou E; Moussa W
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):335-50. PubMed ID: 18568829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of rib surgery parameters for the correction of scoliotic deformities using approximation models.
    Carrier J; Aubin CE; Trochu F; Labelle H
    J Biomech Eng; 2005 Aug; 127(4):680-91. PubMed ID: 16121539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical simulations of scoliotic spinal deformity and correction.
    Noone G; Mazumdar J; Kothiyal KP; Ghista DN; Subbaraj K; Viviani GR
    Australas Phys Eng Sci Med; 1993 Jun; 16(2):63-74. PubMed ID: 8357305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical analysis and simulation of scoliosis surgical correction.
    Viviani GR; Ghista DN; Lozada PJ; Subbaraj K; Barnes G
    Clin Orthop Relat Res; 1986 Jul; (208):40-7. PubMed ID: 3720137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Considerations on scolioses recuperation].
    Trosc P; Grădinaru I; Popescu L; Răutu I; Petrescu O; Herescu G; Savu G
    Rev Med Chir Soc Med Nat Iasi; 1981; 85(4):605-9. PubMed ID: 25528803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a detailed volumetric finite element model of the spine to simulate surgical correction of spinal deformities.
    Driscoll M; Mac-Thiong JM; Labelle H; Parent S
    Biomed Res Int; 2013; 2013():931741. PubMed ID: 23991426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scoliosis and kyphosis in dwarfing conditions.
    Eulert J
    Arch Orthop Trauma Surg (1978); 1983; 102(1):45-7. PubMed ID: 6416223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Progression on finite element modeling method in scoliosis].
    Fan N; Zang L; Hai Y; Du P; Yuan S
    Zhongguo Gu Shang; 2018 Apr; 31(4):391-394. PubMed ID: 29772869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction. Pediatric spinal deformity.
    Baaj AA; Brockmeyer D; Jea A; Samdani AF
    Neurosurg Focus; 2017 Oct; 43(4):E1. PubMed ID: 28965452
    [No Abstract]   [Full Text] [Related]  

  • 40. Finite element simulation of a scoliotic spine with periodic adjustments of an attached growing rod.
    Abolaeha OA; Weber J; Ross LT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5781-5. PubMed ID: 23367243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.