These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 16298856)
1. A shell finite element model of the pelvic floor muscles. d'Aulignac D; Martins JA; Pires EB; Mascarenhas T; Jorge RM Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):339-47. PubMed ID: 16298856 [TBL] [Abstract][Full Text] [Related]
2. Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases. Pato MP; Santos NJ; Areias P; Pires EB; de Carvalho M; Pinto S; Lopes DS Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):505-13. PubMed ID: 21082461 [TBL] [Abstract][Full Text] [Related]
3. Effects of nonlinear muscle elasticity on pelvic floor mechanics during vaginal childbirth. Li X; Kruger JA; Nash MP; Nielsen PM J Biomech Eng; 2010 Nov; 132(11):111010. PubMed ID: 21034151 [TBL] [Abstract][Full Text] [Related]
4. Finite element studies of the deformation of the pelvic floor. Martins JA; Pato MP; Pires EB; Jorge RM; Parente M; Mascarenhas T Ann N Y Acad Sci; 2007 Apr; 1101():316-34. PubMed ID: 17363435 [TBL] [Abstract][Full Text] [Related]
5. Subject specific finite element modelling of the levator ani. Lee SL; Darzi A; Yang GZ Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):360-7. PubMed ID: 16685866 [TBL] [Abstract][Full Text] [Related]
6. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239 [TBL] [Abstract][Full Text] [Related]
7. Creating and simulating skeletal muscle from the visible human data set. Teran J; Sifakis E; Blemker SS; Ng-Thow-Hing V; Lau C; Fedkiw R IEEE Trans Vis Comput Graph; 2005; 11(3):317-28. PubMed ID: 15868831 [TBL] [Abstract][Full Text] [Related]
8. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. Parente MP; Natal Jorge RM; Mascarenhas T; Fernandes AA; Martins JA J Biomech; 2009 Jun; 42(9):1301-6. PubMed ID: 19375709 [TBL] [Abstract][Full Text] [Related]
9. A visco-hyperelastic model for skeletal muscle tissue under high strain rates. Lu YT; Zhu HX; Richmond S; Middleton J J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197 [TBL] [Abstract][Full Text] [Related]
10. A finite-element model for the mechanical analysis of skeletal muscles. Johansson T; Meier P; Blickhan R J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943 [TBL] [Abstract][Full Text] [Related]
11. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Hoyte L; Damaser MS; Warfield SK; Chukkapalli G; Majumdar A; Choi DJ; Trivedi A; Krysl P Am J Obstet Gynecol; 2008 Aug; 199(2):198.e1-5. PubMed ID: 18513684 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue. Hedenstierna S; Halldin P; Brolin K Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161 [TBL] [Abstract][Full Text] [Related]
13. Micromechanical modelling of skeletal muscles based on the finite element method. Böl M; Reese S Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):489-504. PubMed ID: 19230146 [TBL] [Abstract][Full Text] [Related]
14. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions. Phillips AT; Pankaj P; Howie CR; Usmani AS; Simpson AH Med Eng Phys; 2007 Sep; 29(7):739-48. PubMed ID: 17035063 [TBL] [Abstract][Full Text] [Related]
15. A framework for structured modeling of skeletal muscle. Lemos RR; Epstein M; Herzog W; Wyvill B Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651 [TBL] [Abstract][Full Text] [Related]
16. Physical-based statistical shape modeling of the levator ani. Lee SL; Tan E; Khullar V; Gedroyc W; Darzi A; Yang GZ IEEE Trans Med Imaging; 2009 Jun; 28(6):926-36. PubMed ID: 19164076 [TBL] [Abstract][Full Text] [Related]
17. A muscle controlled finite-element model of laryngeal abduction and adduction. Gömmel A; Butenweg C; Bolender K; Grunendahl A Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):377-88. PubMed ID: 17891575 [TBL] [Abstract][Full Text] [Related]
18. A finite element simulation scheme for biological muscular hydrostats. Liang Y; McMeeking RM; Evans AG J Theor Biol; 2006 Sep; 242(1):142-50. PubMed ID: 16580021 [TBL] [Abstract][Full Text] [Related]
19. Contribution of pelvic floor muscles to stiffness of the pelvic ring. Pool-Goudzwaard A; van Dijke GH; van Gurp M; Mulder P; Snijders C; Stoeckart R Clin Biomech (Bristol); 2004 Jul; 19(6):564-71. PubMed ID: 15234479 [TBL] [Abstract][Full Text] [Related]
20. On the derivation of passive 3D material parameters from 1D stress-strain data of hydrostats. Winkel B; Schleichardt A J Biomech; 2011 Jul; 44(11):2113-7. PubMed ID: 21696743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]