BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16298896)

  • 1. Preparation of soybean seed samples for FT-IR microspectroscopy.
    Miller SS; Pietrzak LN; Wetzel DL
    Biotech Histochem; 2005; 80(3-4):117-21. PubMed ID: 16298896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchemical structure of soybean seeds revealed in situ by ultraspatially resolved synchrotron Fourier transformed infrared microspectroscopy.
    Pietrzak LN; Miller SS
    J Agric Food Chem; 2005 Nov; 53(24):9304-11. PubMed ID: 16302740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicomponent peak modeling of protein secondary structures: comparison of gaussian with lorentzian analytical methods for plant feed and seed molecular biology and chemistry research.
    Yu P
    Appl Spectrosc; 2005 Nov; 59(11):1372-80. PubMed ID: 16316515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Infrared spectroscopic study on the component and vigor analysis of Cistanche deserticola seeds].
    Xu R; Sun SQ; Chen J; Chen SL; Zhou F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):97-101. PubMed ID: 19385214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reveal protein molecular structural-chemical differences between two types of winterfat (forage) seeds with physiological differences in low temperature tolerance using synchrotron-based Fourier transform infrared microspectroscopy.
    Yu P; Wang R; Bai Y
    J Agric Food Chem; 2005 Nov; 53(24):9297-303. PubMed ID: 16302739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new, non-destructive method for analysis of clinical samples with FT-IR microspectroscopy. Breast cancer tissue as an example.
    Dukor RK; Liebman MN; Johnson BL
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):211-7. PubMed ID: 9551652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved spectral measurements of delayed luminescence from a single soybean seed: effects of thermal damage and correlation with germination performance.
    Lanzanò L; Sui L; Costanzo E; Gulino M; Scordino A; Tudisco S; Musumeci F
    Luminescence; 2009; 24(6):409-15. PubMed ID: 19424957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional analysis of metal chelating materials using near-field photothermal Fourier transform infrared microspectroscopy.
    Moffat JG; Mayes AG; Belton PS; Craig DQ; Reading M
    Anal Chem; 2010 Jan; 82(1):91-7. PubMed ID: 19957959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of glycinin and beta-conglycinin subunits that contribute to the increased protein content of high-protein soybean lines.
    Krishnan HB; Natarajan SS; Mahmoud AA; Nelson RL
    J Agric Food Chem; 2007 Mar; 55(5):1839-45. PubMed ID: 17266327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy.
    Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS
    Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared microspectroscopy as a new tool for nematode studies.
    Ami D; Natalello A; Zullini A; Doglia SM
    FEBS Lett; 2004 Oct; 576(3):297-300. PubMed ID: 15498551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of harvesting and drying conditions on chlorophyll levels of soybean (Glycine max L. Merr).
    Gomes MS; Sinnecker P; Tanaka RT; Lanfer-Marquez UM
    J Agric Food Chem; 2003 Mar; 51(6):1634-9. PubMed ID: 12617597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of inorganic phosphorus in soybeans with near-infrared spectroscopy.
    Delwiche SR; Pordesimo LO; Scaboo AM; Pantalone VR
    J Agric Food Chem; 2006 Sep; 54(19):6951-6. PubMed ID: 16968047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species.
    Janbu AO; Møretrø T; Bertrand D; Kohler A
    FEMS Microbiol Lett; 2008 Jan; 278(2):164-70. PubMed ID: 18053065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.
    Otsuka M; Fukui Y; Ozaki Y
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):194-200. PubMed ID: 19121925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of multivariate curve resolution for analysis of FT-IR microspectroscopic images of in situ plant tissue.
    Budevska BO; Sum ST; Jones TJ
    Appl Spectrosc; 2003 Feb; 57(2):124-31. PubMed ID: 14610947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of pumpkin seed oils according to their species and genetic variety by attenuated total reflection Fourier-transform infrared spectroscopy.
    Saucedo-Hernández Y; Lerma-García MJ; Herrero-Martínez JM; Ramis-Ramos G; Jorge-Rodríguez E; Simí-Alfonso EF
    J Agric Food Chem; 2011 Apr; 59(8):4125-9. PubMed ID: 21410160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.
    Schulmerich MV; Walsh MJ; Gelber MK; Kong R; Kole MR; Harrison SK; McKinney J; Thompson D; Kull LS; Bhargava R
    J Agric Food Chem; 2012 Aug; 60(33):8097-102. PubMed ID: 22746340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue.
    Yu P; Block H; Niu Z; Doiron K
    J Synchrotron Radiat; 2007 Jul; 14(Pt 4):382-90. PubMed ID: 17587665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new Fourier transform infrared method for the determination of moisture in edible oils.
    Al-Alawi A; van de Voort FR; Sedman J
    Appl Spectrosc; 2005 Oct; 59(10):1295-9. PubMed ID: 16274543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.