BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16299079)

  • 1. A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots.
    Swift JL; Heuff R; Cramb DT
    Biophys J; 2006 Feb; 90(4):1396-410. PubMed ID: 16299079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic characterization of streptavidin functionalized quantum dots.
    Wu Y; Lopez GP; Sklar LA; Buranda T
    Anal Biochem; 2007 May; 364(2):193-203. PubMed ID: 17368555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous multicolor fluorescence cross-correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation.
    Hwang LC; Gösch M; Lasser T; Wohland T
    Biophys J; 2006 Jul; 91(2):715-27. PubMed ID: 16632502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HaloTag protein-mediated specific labeling of living cells with quantum dots.
    So MK; Yao H; Rao J
    Biochem Biophys Res Commun; 2008 Sep; 374(3):419-23. PubMed ID: 18621022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots.
    Fountaine TJ; Wincovitch SM; Geho DH; Garfield SH; Pittaluga S
    Mod Pathol; 2006 Sep; 19(9):1181-91. PubMed ID: 16778828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.
    Wu Y; Campos SK; Lopez GP; Ozbun MA; Sklar LA; Buranda T
    Anal Biochem; 2007 May; 364(2):180-92. PubMed ID: 17397793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors.
    Lidke DS; Nagy P; Jovin TM; Arndt-Jovin DJ
    Methods Mol Biol; 2007; 374():69-79. PubMed ID: 17237530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.
    Mason JN; Tomlinson ID; Rosenthal SJ; Blakely RD
    Methods Mol Biol; 2005; 303():35-50. PubMed ID: 15923673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotin-4-fluorescein based fluorescence quenching assay for determination of biotin binding capacity of streptavidin conjugated quantum dots.
    Mittal R; Bruchez MP
    Bioconjug Chem; 2011 Mar; 22(3):362-8. PubMed ID: 21314110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot-fluorescence in situ hybridisation for Ectromelia virus detection based on biotin-streptavidin interactions.
    Wang T; Zheng Z; Zhang XE; Wang H
    Talanta; 2016 Sep; 158():179-184. PubMed ID: 27343592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantum dot-labeled ligand-receptor binding assay for G protein-coupled receptors contained in minimally purified membrane nanopatches.
    Swift JL; Burger MC; Cramb DT
    Methods Mol Biol; 2009; 552():329-41. PubMed ID: 19513661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor.
    Swift JL; Burger MC; Massotte D; Dahms TE; Cramb DT
    Anal Chem; 2007 Sep; 79(17):6783-91. PubMed ID: 17683166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotinylated-spiperone ligands for quantum dot labeling of the dopamine D2 receptor in live cell cultures.
    Tomlinson ID; Kovtun O; Crescentini TM; Rosenthal SJ
    Bioorg Med Chem Lett; 2019 Apr; 29(8):959-964. PubMed ID: 30808590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of fluorescent molecules by functionalized polymeric nanocontainers: investigation by confocal fluorescence imaging and fluorescence correlation spectroscopy.
    Rigler P; Meier W
    J Am Chem Soc; 2006 Jan; 128(1):367-73. PubMed ID: 16390167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer quantum dot constructs using self-assembly methods.
    Rauf S; Glidle A; Cooper JM
    Langmuir; 2010 Nov; 26(22):16934-40. PubMed ID: 20936803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles as fluorescence labels: is size all that matters?
    Swift JL; Cramb DT
    Biophys J; 2008 Jul; 95(2):865-76. PubMed ID: 18390610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative single-molecule detection of protein based on DNA tetrahedron fluorescent nanolabels.
    Ding Y; Liu X; Zhu J; Wang L; Jiang W
    Talanta; 2014 Jul; 125():393-9. PubMed ID: 24840462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Advantages and Limitations of Quantum Dots in Protein Array Applications.
    Ayadi N; Lafont F; Charlier C; Benhelli-Mokrani H; Sokolov P; Sukhanova A; Fleury F; Nabiev I
    Methods Mol Biol; 2020; 2135():259-273. PubMed ID: 32246341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-bridged bioconjugation of fluorescent quantum dots for highly sensitive microfluidic protein chips.
    Hu M; He Y; Song S; Yan J; Lu HT; Weng LX; Wang LH; Fan C
    Chem Commun (Camb); 2010 Sep; 46(33):6126-8. PubMed ID: 20664878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot probes for bacteria distinguish Escherichia coli mutants and permit in vivo imaging.
    Leevy WM; Lambert TN; Johnson JR; Morris J; Smith BD
    Chem Commun (Camb); 2008 May; (20):2331-3. PubMed ID: 18473060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.