These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16299385)

  • 1. Relaxation of selection with equalization of parental contributions in conservation programs: an experimental test with Drosophila melanogaster.
    Rodríguez-Ramilo ST; Morán P; Caballero A
    Genetics; 2006 Feb; 172(2):1043-54. PubMed ID: 16299385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of deleterious mutations and equalization of parental contributions in the conservation of genetic resources.
    Fernández J; Caballero A
    Heredity (Edinb); 2001 Apr; 86(Pt 4):480-8. PubMed ID: 11520348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling problems in conservation genetics using Drosophila: consequences of fluctuating population sizes.
    Woodworth LM; Montgomery ME; Nurthen RK; Briscoe DA; Frankham R
    Mol Ecol; 1994 Aug; 3(4):393-9. PubMed ID: 7921363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polygenic mutation in Drosophila melanogaster: the causal relationship of bristle number to fitness.
    Nuzhdin SV; Fry JD; Mackay TF
    Genetics; 1995 Feb; 139(2):861-72. PubMed ID: 7713437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental evaluation with Drosophila melanogaster of a novel dynamic system for the management of subdivided populations in conservation programs.
    Avila V; Fernández J; Quesada H; Caballero A
    Heredity (Edinb); 2011 May; 106(5):765-74. PubMed ID: 20823908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polygenic mutation in Drosophila melanogaster: non-linear divergence among unselected strains.
    Mackay TF; Lyman RF; Hill WG
    Genetics; 1995 Feb; 139(2):849-59. PubMed ID: 7713436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation-selection balance accounting for genetic variation for viability in Drosophila melanogaster as deduced from an inbreeding and artificial selection experiment.
    Rodríguez-Ramilo ST; Pérez-Figueroa A; Fernández B; Fernández J; Caballero A
    J Evol Biol; 2004 May; 17(3):528-41. PubMed ID: 15149396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster.
    Long AD; Mullaney SL; Reid LA; Fry JD; Langley CH; Mackay TF
    Genetics; 1995 Mar; 139(3):1273-91. PubMed ID: 7768438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A case of abnormal sex-dimorphism for bristle number in Drosophila melanogaster.
    Rasmuson M
    Heredity (Edinb); 1996 Aug; 77 ( Pt 2)():146-53. PubMed ID: 8760398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains.
    Mackay TF; Fry JD; Lyman RF; Nuzhdin SV
    Genetics; 1994 Mar; 136(3):937-51. PubMed ID: 8005446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of nonadditive genetic effects on early fecundity in Drosophila melanogaster.
    Fernández J; Rodríguez-Ramilo ST; Pérez-Figueroa A; López-Fanjul C; Caballero A
    Evolution; 2003 Mar; 57(3):558-65. PubMed ID: 12703945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The build up of mutation-selection- drift balance in laboratory Drosophila populations.
    García-Dorado A; Avila V; Sánchez-Molano E; Manrique A; López-Fanjul C
    Evolution; 2007 Mar; 61(3):653-65. PubMed ID: 17348928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polygenic mutation in Drosophila melanogaster: genotype x environment interaction for spontaneous mutations affecting bristle number.
    Mackay TF; Lyman RF
    Genetica; 1998; 102-103(1-6):199-215. PubMed ID: 9720280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of selection, as measured by single nucleotide polymorphism variation, is dependent on inbreeding rate in Drosophila melanogaster.
    Demontis D; Pertoldi C; Loeschcke V; Mikkelsen K; Axelsson T; Kristensen TN
    Mol Ecol; 2009 Nov; 18(22):4551-63. PubMed ID: 19780974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness.
    López MA; López-Fanjul C
    Genet Res; 1993 Apr; 61(2):117-26. PubMed ID: 8319901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic architecture of two fitness-related traits in Drosophila melanogaster: ovariole number and thorax length.
    Telonis-Scott M; McIntyre LM; Wayne ML
    Genetica; 2005 Nov; 125(2-3):211-22. PubMed ID: 16247693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic adaptation to captivity in species conservation programs.
    Frankham R
    Mol Ecol; 2008 Jan; 17(1):325-33. PubMed ID: 18173504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterozygosity at a single locus explains a large proportion of variation in two fitness-related traits in great tits: a general or a local effect?
    García-Navas V; Cáliz-Campal C; Ferrer ES; Sanz JJ; Ortego J
    J Evol Biol; 2014 Dec; 27(12):2807-19. PubMed ID: 25370831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of population size and selection intensity on responses to disruptive selection in Drosophila melangaster.
    Barker JS; Karlsson LJ
    Genetics; 1974 Oct; 78(2):715-35. PubMed ID: 4217303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the adaptive potential of isolated populations: experimental simulations using Drosophila.
    Swindell WR; Bouzat JL
    Evolution; 2005 Oct; 59(10):2159-69. PubMed ID: 16405160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.