These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16299496)

  • 41. Stress fibres are embedded in a contractile cortical network.
    Vignaud T; Copos C; Leterrier C; Toro-Nahuelpan M; Tseng Q; Mahamid J; Blanchoin L; Mogilner A; Théry M; Kurzawa L
    Nat Mater; 2021 Mar; 20(3):410-420. PubMed ID: 33077951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Steady-state helices of the actin homolog MreB inside bacteria: dynamics without motors.
    Allard JF; Rutenberg AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031916. PubMed ID: 17930280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Actin age orchestrates myosin-5 and myosin-6 run lengths.
    Zimmermann D; Santos A; Kovar DR; Rock RS
    Curr Biol; 2015 Aug; 25(15):2057-62. PubMed ID: 26190073
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AFM visualization of cortical filaments/network under cell-bound membrane vesicles.
    Zhang X; Tang Q; Wu L; Huang J; Chen Y
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2225-32. PubMed ID: 26141051
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Force-velocity relation for actin-polymerization-driven motility from Brownian dynamics simulations.
    Lee KC; Liu AJ
    Biophys J; 2009 Sep; 97(5):1295-304. PubMed ID: 19720017
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonlinear Actin Deformations Lead to Network Stiffening, Yielding, and Nonuniform Stress Propagation.
    Gurmessa B; Ricketts S; Robertson-Anderson RM
    Biophys J; 2017 Oct; 113(7):1540-1550. PubMed ID: 28214480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Force propagation and force generation in cells.
    Jonas O; Duschl C
    Cytoskeleton (Hoboken); 2010 Sep; 67(9):555-63. PubMed ID: 20607861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The force-velocity relationship for the actin-based motility of Listeria monocytogenes.
    McGrath JL; Eungdamrong NJ; Fisher CI; Peng F; Mahadevan L; Mitchison TJ; Kuo SC
    Curr Biol; 2003 Feb; 13(4):329-32. PubMed ID: 12593799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monitoring biomolecular interactions by time-lapse atomic force microscopy.
    Stolz M; Stoffler D; Aebi U; Goldsbury C
    J Struct Biol; 2000 Sep; 131(3):171-80. PubMed ID: 11052889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope.
    Hofmann UG; Rotsch C; Parak WJ; Radmacher M
    J Struct Biol; 1997 Jul; 119(2):84-91. PubMed ID: 9245747
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds.
    Lee CY; Lou J; Wen KK; McKane M; Eskin SG; Ono S; Chien S; Rubenstein PA; Zhu C; McIntire LV
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):5022-7. PubMed ID: 23460697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.
    Kovar DR; Pollard TD
    Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14725-30. PubMed ID: 15377785
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural, mechanical, and dynamical variability of the actin cortex in living cells.
    Eghiaian F; Rigato A; Scheuring S
    Biophys J; 2015 Mar; 108(6):1330-1340. PubMed ID: 25809247
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of molecular-scale processes on observable growth properties of actin networks.
    Zhu J; Carlsson AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031914. PubMed ID: 20365777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crosslinking actin networks produces compressive force.
    Ma R; Berro J
    Cytoskeleton (Hoboken); 2019 May; 76(5):346-354. PubMed ID: 31278856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A multi-structural single cell model of force-induced interactions of cytoskeletal components.
    Barreto S; Clausen CH; Perrault CM; Fletcher DA; Lacroix D
    Biomaterials; 2013 Aug; 34(26):6119-26. PubMed ID: 23702149
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A continuum model for the growth of dendritic actin networks.
    Abeyaratne R; Purohit PK
    Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200464. PubMed ID: 33071590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial high resolution of actin filament organization by PeakForce atomic force microscopy.
    Liu L; Wei Y; Liu J; Wang K; Zhang J; Zhang P; Zhou Y; Li B
    Cell Prolif; 2020 Jan; 53(1):e12670. PubMed ID: 31568631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two competing orientation patterns explain experimentally observed anomalies in growing actin networks.
    Weichsel J; Schwarz US
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6304-9. PubMed ID: 20308581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical detection of a long-range actin network emanating from a biomimetic cortex.
    Bussonnier M; Carvalho K; Lemière J; Joanny JF; Sykes C; Betz T
    Biophys J; 2014 Aug; 107(4):854-62. PubMed ID: 25140420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.