These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 16299515)

  • 1. Folding zones inside the ribosomal exit tunnel.
    Lu J; Deutsch C
    Nat Struct Mol Biol; 2005 Dec; 12(12):1123-9. PubMed ID: 16299515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the electrostatic potential within the ribosomal exit tunnel.
    Lu J; Kobertz WR; Deutsch C
    J Mol Biol; 2007 Aug; 371(5):1378-91. PubMed ID: 17631312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.
    Fulle S; Gohlke H
    J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment.
    Lin KF; Sun CS; Huang YC; Chan SI; Koubek J; Wu TH; Huang JJ
    Biophys J; 2012 Jun; 102(12):2818-27. PubMed ID: 22735532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling.
    Su T; Cheng J; Sohmen D; Hedman R; Berninghausen O; von Heijne G; Wilson DN; Beckmann R
    Elife; 2017 May; 6():. PubMed ID: 28556777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene.
    Onoue N; Yamashita Y; Nagao N; Goto DB; Onouchi H; Naito S
    J Biol Chem; 2011 Apr; 286(17):14903-12. PubMed ID: 21335553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel.
    Bornemann T; Jöckel J; Rodnina MV; Wintermeyer W
    Nat Struct Mol Biol; 2008 May; 15(5):494-9. PubMed ID: 18391966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatics in the ribosomal tunnel modulate chain elongation rates.
    Lu J; Deutsch C
    J Mol Biol; 2008 Dec; 384(1):73-86. PubMed ID: 18822297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. alpha-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel.
    Bhushan S; Gartmann M; Halic M; Armache JP; Jarasch A; Mielke T; Berninghausen O; Wilson DN; Beckmann R
    Nat Struct Mol Biol; 2010 Mar; 17(3):313-7. PubMed ID: 20139981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel.
    Tu L; Deutsch C
    J Mol Biol; 2017 Jun; 429(11):1722-1732. PubMed ID: 28478285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary structure formation of a transmembrane segment in Kv channels.
    Lu J; Deutsch C
    Biochemistry; 2005 Jun; 44(23):8230-43. PubMed ID: 15938612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics.
    Knight AM; Culviner PH; Kurt-Yilmaz N; Zou T; Ozkan SB; Cavagnero S
    ACS Chem Biol; 2013; 8(6):1195-204. PubMed ID: 23517476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ribosome modulates folding inside the ribosomal exit tunnel.
    Wruck F; Tian P; Kudva R; Best RB; von Heijne G; Tans SJ; Katranidis A
    Commun Biol; 2021 May; 4(1):523. PubMed ID: 33953328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of a nascent peptide on the ribosome.
    Hardesty B; Kramer G
    Prog Nucleic Acid Res Mol Biol; 2001; 66():41-66. PubMed ID: 11051761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism and structure of Trigger Factor bound to the translating ribosome.
    Merz F; Boehringer D; Schaffitzel C; Preissler S; Hoffmann A; Maier T; Rutkowska A; Lozza J; Ban N; Bukau B; Deuerling E
    EMBO J; 2008 Jun; 27(11):1622-32. PubMed ID: 18497744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tertiary interactions within the ribosomal exit tunnel.
    Kosolapov A; Deutsch C
    Nat Struct Mol Biol; 2009 Apr; 16(4):405-11. PubMed ID: 19270700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein translocation through a tunnel induces changes in folding kinetics: a lattice model study.
    Contreras Martínez LM; Martínez-Veracoechea FJ; Pohkarel P; Stroock AD; Escobedo FA; DeLisa MP
    Biotechnol Bioeng; 2006 May; 94(1):105-17. PubMed ID: 16528757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Alpha to Beta - a co-translational way to fold?
    Komar AA
    Cell Cycle; 2022 Aug; 21(16):1663-1666. PubMed ID: 35400283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition.
    Starosta AL; Karpenko VV; Shishkina AV; Mikolajka A; Sumbatyan NV; Schluenzen F; Korshunova GA; Bogdanov AA; Wilson DN
    Chem Biol; 2010 May; 17(5):504-14. PubMed ID: 20534348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional discrimination and propagation of local rearrangements along the ribosomal exit tunnel.
    Lu J; Deutsch C
    J Mol Biol; 2014 Dec; 426(24):4061-4073. PubMed ID: 25308341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.