These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16299520)

  • 1. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana.
    Chen MT; Weiss R
    Nat Biotechnol; 2005 Dec; 23(12):1551-5. PubMed ID: 16299520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of an artificial intercellular communication network using the nitric oxide signaling elements in mammalian cells.
    Wang WD; Chen ZT; Kang BG; Li R
    Exp Cell Res; 2008 Feb; 314(4):699-706. PubMed ID: 18207141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A synthetic multicellular system for programmed pattern formation.
    Basu S; Gerchman Y; Collins CH; Arnold FH; Weiss R
    Nature; 2005 Apr; 434(7037):1130-4. PubMed ID: 15858574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.
    Yokoyama A; Yamashino T; Amano Y; Tajima Y; Imamura A; Sakakibara H; Mizuno T
    Plant Cell Physiol; 2007 Jan; 48(1):84-96. PubMed ID: 17132632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana.
    Dortay H; Mehnert N; Bürkle L; Schmülling T; Heyl A
    FEBS J; 2006 Oct; 273(20):4631-44. PubMed ID: 16965536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana.
    Ishida K; Yamashino T; Yokoyama A; Mizuno T
    Plant Cell Physiol; 2008 Jan; 49(1):47-57. PubMed ID: 18037673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis.
    Wenkel S; Turck F; Singer K; Gissot L; Le Gourrierec J; Samach A; Coupland G
    Plant Cell; 2006 Nov; 18(11):2971-84. PubMed ID: 17138697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward an interaction map of the two-component signaling pathway of Arabidopsis thaliana.
    Dortay H; Gruhn N; Pfeifer A; Schwerdtner M; Schmülling T; Heyl A
    J Proteome Res; 2008 Sep; 7(9):3649-60. PubMed ID: 18642946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Alternative ways of stress regulation in cells of Saccharomyces cerevisiae: transcriptional activators Msn2 and Msn4].
    Erkina TI; Lavrova MV; Erkin AM
    Tsitologiia; 2009; 51(3):271-8. PubMed ID: 19435282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.
    Watanabe M; Watanabe D; Akao T; Shimoi H
    J Biosci Bioeng; 2009 May; 107(5):516-8. PubMed ID: 19393550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding signaling in yeast: Insights from network analysis.
    Arga KY; Onsan ZI; Kirdar B; Ulgen KO; Nielsen J
    Biotechnol Bioeng; 2007 Aug; 97(5):1246-58. PubMed ID: 17252576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
    Serrano G; Herrera-Palau R; Romero JM; Serrano A; Coupland G; Valverde F
    Curr Biol; 2009 Mar; 19(5):359-68. PubMed ID: 19230666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative model of the response of yeast to osmotic shock.
    Klipp E; Nordlander B; Krüger R; Gennemark P; Hohmann S
    Nat Biotechnol; 2005 Aug; 23(8):975-82. PubMed ID: 16025103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TORC1 controls degradation of the transcription factor Stp1, a key effector of the SPS amino-acid-sensing pathway in Saccharomyces cerevisiae.
    Shin CS; Kim SY; Huh WK
    J Cell Sci; 2009 Jun; 122(Pt 12):2089-99. PubMed ID: 19494127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAM pathway contributes to Rpb4 dependent pseudohyphal differentiation in Saccharomyces cerevisiae.
    Verma-Gaur J; Deshpande S; Sadhale PP
    Fungal Genet Biol; 2008 Oct; 45(10):1373-9. PubMed ID: 18687406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4.
    Lee P; Cho BR; Joo HS; Hahn JS
    Mol Microbiol; 2008 Nov; 70(4):882-95. PubMed ID: 18793336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling specificity in the yeast MAPK signaling networks.
    Zou X; Peng T; Pan Z
    J Theor Biol; 2008 Jan; 250(1):139-55. PubMed ID: 17977559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis.
    March-Díaz R; García-Domínguez M; Lozano-Juste J; León J; Florencio FJ; Reyes JC
    Plant J; 2008 Feb; 53(3):475-87. PubMed ID: 17988222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae.
    Araki Y; Wu H; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jan; 107(1):1-6. PubMed ID: 19147100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pheromone signaling pathways in yeast.
    Dohlman HG; Slessareva JE
    Sci STKE; 2006 Dec; 2006(364):cm6. PubMed ID: 17148787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.