These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
534 related articles for article (PubMed ID: 16300393)
1. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release. Halbrooks PJ; Giannetti AM; Klein JS; Björkman PJ; Larouche JR; Smith VC; MacGillivray RT; Everse SJ; Mason AB Biochemistry; 2005 Nov; 44(47):15451-60. PubMed ID: 16300393 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the mechanism of iron release from the C-lobe of human serum transferrin: mutational analysis of the role of a pH sensitive triad. Halbrooks PJ; He QY; Briggs SK; Everse SJ; Smith VC; MacGillivray RT; Mason AB Biochemistry; 2003 Apr; 42(13):3701-7. PubMed ID: 12667060 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of C-lobe ligands of human serum transferrin: insights into the mechanism of iron release. Mason AB; Halbrooks PJ; James NG; Connolly SA; Larouche JR; Smith VC; MacGillivray RT; Chasteen ND Biochemistry; 2005 Jun; 44(22):8013-21. PubMed ID: 15924420 [TBL] [Abstract][Full Text] [Related]
4. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC Biochemistry; 1999 Jul; 38(30):9704-11. PubMed ID: 10423249 [TBL] [Abstract][Full Text] [Related]
5. Intrinsic fluorescence reports a global conformational change in the N-lobe of human serum transferrin following iron release. James NG; Berger CL; Byrne SL; Smith VC; MacGillivray RT; Mason AB Biochemistry; 2007 Sep; 46(37):10603-11. PubMed ID: 17711300 [TBL] [Abstract][Full Text] [Related]
6. A kinetically active site in the C-lobe of human transferrin. Zak O; Tam B; MacGillivray RT; Aisen P Biochemistry; 1997 Sep; 36(36):11036-43. PubMed ID: 9283096 [TBL] [Abstract][Full Text] [Related]
7. Interlobe communication in human serum transferrin: metal binding and conformational dynamics investigated by electrospray ionization mass spectrometry. Gumerov DR; Mason AB; Kaltashov IA Biochemistry; 2003 May; 42(18):5421-8. PubMed ID: 12731884 [TBL] [Abstract][Full Text] [Related]
8. Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Jeffrey PD; Bewley MC; MacGillivray RT; Mason AB; Woodworth RC; Baker EN Biochemistry; 1998 Oct; 37(40):13978-86. PubMed ID: 9760232 [TBL] [Abstract][Full Text] [Related]
9. Iron release from transferrin, its C-lobe, and their complexes with transferrin receptor: presence of N-lobe accelerates release from C-lobe at endosomal pH. Zak O; Aisen P Biochemistry; 2003 Oct; 42(42):12330-4. PubMed ID: 14567694 [TBL] [Abstract][Full Text] [Related]
10. Transferrins: iron release from lactoferrin. Abdallah FB; El Hage Chahine JM J Mol Biol; 2000 Oct; 303(2):255-66. PubMed ID: 11023790 [TBL] [Abstract][Full Text] [Related]
11. Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Lambert LA; Perri H; Halbrooks PJ; Mason AB Comp Biochem Physiol B Biochem Mol Biol; 2005 Oct; 142(2):129-41. PubMed ID: 16111909 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Baker HM; He QY; Briggs SK; Mason AB; Baker EN Biochemistry; 2003 Jun; 42(23):7084-9. PubMed ID: 12795604 [TBL] [Abstract][Full Text] [Related]
13. Tertiary structural changes and iron release from human serum transferrin. Mecklenburg SL; Donohoe RJ; Olah GA J Mol Biol; 1997 Aug; 270(5):739-50. PubMed ID: 9245601 [TBL] [Abstract][Full Text] [Related]
14. Iron release is reduced by mutations of lysines 206 and 296 in recombinant N-terminal half-transferrin. Steinlein LM; Ligman CM; Kessler S; Ikeda RA Biochemistry; 1998 Sep; 37(39):13696-703. PubMed ID: 9753457 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of diferric hen ovotransferrin at 2.4 A resolution. Kurokawa H; Mikami B; Hirose M J Mol Biol; 1995 Nov; 254(2):196-207. PubMed ID: 7490743 [TBL] [Abstract][Full Text] [Related]
16. X-ray structures of transferrins and related proteins. Mizutani K; Toyoda M; Mikami B Biochim Biophys Acta; 2012 Mar; 1820(3):203-11. PubMed ID: 21855609 [TBL] [Abstract][Full Text] [Related]
17. Domain closure mechanism in transferrins: new viewpoints about the hinge structure and motion as deduced from high resolution crystal structures of ovotransferrin N-lobe. Mizutani K; Mikami B; Hirose M J Mol Biol; 2001 Jun; 309(4):937-47. PubMed ID: 11399070 [TBL] [Abstract][Full Text] [Related]
18. The oxalate effect on release of iron from human serum transferrin explained. Halbrooks PJ; Mason AB; Adams TE; Briggs SK; Everse SJ J Mol Biol; 2004 May; 339(1):217-26. PubMed ID: 15123433 [TBL] [Abstract][Full Text] [Related]
19. Reptilian transferrins: evolution of disulphide bridges and conservation of iron-binding center. Ciuraszkiewicz J; Biczycki M; Maluta A; Martin S; Watorek W; Olczak M Gene; 2007 Jul; 396(1):28-38. PubMed ID: 17466466 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure and iron-binding properties of the R210K mutant of the N-lobe of human lactoferrin: implications for iron release from transferrins. Peterson NA; Anderson BF; Jameson GB; Tweedie JW; Baker EN Biochemistry; 2000 Jun; 39(22):6625-33. PubMed ID: 10828980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]