These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16300432)

  • 1. Various aspects of feeding behavior can be partially dissociated in the rat by the incentive properties of food and the physiological state.
    Barbano MF; Cador M
    Behav Neurosci; 2005 Oct; 119(5):1244-53. PubMed ID: 16300432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs.
    Barbano MF; Cador M
    Neuropsychopharmacology; 2006 Jul; 31(7):1371-81. PubMed ID: 16205784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of food motivation on the neuronal reaction of the somatic cortex in the cat during instrumental reflex].
    Busel' BI; Moldavan MG
    Neirofiziologiia; 1987; 19(5):646-53. PubMed ID: 3447063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Behav Brain Res; 2005 Mar; 158(1):133-42. PubMed ID: 15680201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats.
    Verwey M; Khoja Z; Stewart J; Amir S
    Neuroscience; 2007 Jun; 147(2):277-85. PubMed ID: 17544223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Region-specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats.
    Verwey M; Khoja Z; Stewart J; Amir S
    Neurosci Lett; 2008 Jul; 440(1):54-8. PubMed ID: 18541376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Neuroscience; 2005; 133(1):293-303. PubMed ID: 15893651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the ventrolateral orbital cortex and medial prefrontal cortex in incentive downshift situations.
    Ortega LA; Glueck AC; Uhelski M; Fuchs PN; Papini MR
    Behav Brain Res; 2013 May; 244():120-9. PubMed ID: 23380675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of local cerebral glucose utilization during circadian food-anticipatory activity.
    de Vasconcelos AP; Bartol-Munier I; Feillet CA; Gourmelen S; Pevet P; Challet E
    Neuroscience; 2006 May; 139(2):741-8. PubMed ID: 16472928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The choice of reinforcement quality depending on the delay time of the instrumental reaction in cats].
    Merzhanova GK; Berg AI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(5):948-54. PubMed ID: 1662445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus.
    Landry GJ; Yamakawa GR; Mistlberger RE
    Brain Res; 2007 Apr; 1141():108-18. PubMed ID: 17296167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The behavioral phenomenon of "parasitism" in rats].
    Khromova SV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(3):479-89. PubMed ID: 7645323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Damage to the nucleus accumbens shell but not core impairs ventral tegmental area stimulation-induced feeding.
    Trojniar W; Plucińska K; Ignatowska-Jankowska B; Jankowski M
    J Physiol Pharmacol; 2007 Aug; 58 Suppl 3():63-71. PubMed ID: 17901583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motivational control of second-order conditioning.
    Winterbauer NE; Balleine BW
    J Exp Psychol Anim Behav Process; 2005 Jul; 31(3):334-40. PubMed ID: 16045387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hindbrain catecholamine neurons mediate consummatory responses to glucoprivation.
    Hudson B; Ritter S
    Physiol Behav; 2004 Sep; 82(2-3):241-50. PubMed ID: 15276785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of infralimbic cortical lesions on temperature and locomotor activity responses to feeding in rats.
    Recabarren MP; Valdés JL; Farías P; Serón-Ferré M; Torrealba F
    Neuroscience; 2005; 134(4):1413-22. PubMed ID: 16039788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of dopamine and opioids in the motivation to eat: influence of palatability, homeostatic state, and behavioral paradigms.
    Barbano MF; Le Saux M; Cador M
    Psychopharmacology (Berl); 2009 Apr; 203(3):475-87. PubMed ID: 19015837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats.
    Szentirmai E; Hajdu I; Obal F; Krueger JM
    Brain Res; 2006 May; 1088(1):131-40. PubMed ID: 16631138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential behavior in the rat: a new model using food-reinforced instrumental behavior.
    Domenger D; Schwarting RK
    Behav Brain Res; 2005 May; 160(2):197-207. PubMed ID: 15863217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian food anticipatory activity: Entrainment limits and scalar properties re-examined.
    Petersen CC; Patton DF; Parfyonov M; Mistlberger RE
    Behav Neurosci; 2014 Dec; 128(6):689-702. PubMed ID: 25285457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.