BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16300810)

  • 1. Transition state analysis of adenosine nucleosidase from yellow lupin (Lupinus luteus).
    Bates C; Kendrick Z; McDonald N; Kline PC
    Phytochemistry; 2006 Jan; 67(1):5-12. PubMed ID: 16300810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic isotope effects of nucleoside hydrolase from Escherichia coli.
    Hunt C; Gillani N; Farone A; Rezaei M; Kline PC
    Biochim Biophys Acta; 2005 Aug; 1751(2):140-9. PubMed ID: 16027052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of kinetic isotope effects for nucleoside hydrolases using gas chromatography/mass spectrometry.
    Kline PC; Rezaee M; Lee TA
    Anal Biochem; 1999 Nov; 275(1):6-10. PubMed ID: 10542103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-stimulated guanosine--inosine nucleosidase from yellow lupin (Lupinus luteus).
    Szuwart M; Starzyńska E; Pietrowska-Borek M; Guranowski A
    Phytochemistry; 2006 Jul; 67(14):1476-85. PubMed ID: 16820181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata.
    Horenstein BA; Parkin DW; Estupiñán B; Schramm VL
    Biochemistry; 1991 Nov; 30(44):10788-95. PubMed ID: 1931998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant nucleoside 5'-phosphoramidate hydrolase; simple purification from yellow lupin (Lupinus luteus) seeds and properties of homogeneous enzyme.
    Guranowski A; Wojdyła AM; Rydzik AM; Stepiński J; Jemielity J
    Acta Biochim Pol; 2011; 58(1):131-6. PubMed ID: 21403921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypanosomal nucleoside hydrolase. A novel mechanism from the structure with a transition-state inhibitor.
    Degano M; Almo SC; Sacchettini JC; Schramm VL
    Biochemistry; 1998 May; 37(18):6277-85. PubMed ID: 9572842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata.
    Degano M; Gopaul DN; Scapin G; Schramm VL; Sacchettini JC
    Biochemistry; 1996 May; 35(19):5971-81. PubMed ID: 8634238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanosomal nucleoside hydrolase. Resonance Raman spectroscopy of a transition-state inhibitor complex.
    Deng H; Chan AW; Bagdassarian CK; Estupiñán B; Ganem B; Callender RH; Schramm VL
    Biochemistry; 1996 May; 35(19):6037-47. PubMed ID: 8634245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic and allosteric mechanism of AMP nucleosidase from primary, beta-secondary, and multiple heavy atom kinetic isotope effects.
    Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):913-20. PubMed ID: 3552037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of the molecular electrostatic potential surface of an enzymatic transition state with novel transition-state inhibitors.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Sep; 32(38):9917-25. PubMed ID: 8399161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
    Suarez J; Schramm VL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11247-51. PubMed ID: 26305965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulations of trypanosomal nucleoside hydrolase: determination of the protonation state of the bound transition-state analogue.
    Mazumder D; Kahn K; Bruice TC
    J Am Chem Soc; 2002 Jul; 124(30):8825-33. PubMed ID: 12137535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoside hydrolase from Crithidia fasciculata. Metabolic role, purification, specificity, and kinetic mechanism.
    Parkin DW; Horenstein BA; Abdulah DR; Estupiñán B; Schramm VL
    J Biol Chem; 1991 Nov; 266(31):20658-65. PubMed ID: 1939115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanosine-inosine-preferring nucleoside N-glycohydrolase from Crithidia fasciculata.
    Estupiñán B; Schramm VL
    J Biol Chem; 1994 Sep; 269(37):23068-73. PubMed ID: 8083208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isozyme-specific transition state inhibitors for the trypanosomal nucleoside hydrolases.
    Parkin DW; Limberg G; Tyler PC; Furneaux RH; Chen XY; Schramm VL
    Biochemistry; 1997 Mar; 36(12):3528-34. PubMed ID: 9132003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.