These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16300927)

  • 41. Mirror-induced visual illusion of hand movements: a functional magnetic resonance imaging study.
    Matthys K; Smits M; Van der Geest JN; Van der Lugt A; Seurinck R; Stam HJ; Selles RW
    Arch Phys Med Rehabil; 2009 Apr; 90(4):675-81. PubMed ID: 19345786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The coordination of hand transport and grasp formation during single- and double-perturbed human prehension movements.
    Dubrowski A; Bock O; Carnahan H; Jüngling S
    Exp Brain Res; 2002 Aug; 145(3):365-71. PubMed ID: 12136386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinematic analysis of unimanual reaching and grasping movements in children with hemiplegic cerebral palsy.
    Rönnqvist L; Rösblad B
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):165-75. PubMed ID: 17070630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task.
    Francis JT; Chapin JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):172-4. PubMed ID: 16792286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reaching and grasping with restricted peripheral vision.
    González-Alvarez C; Subramanian A; Pardhan S
    Ophthalmic Physiol Opt; 2007 May; 27(3):265-74. PubMed ID: 17470239
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visuomotor characterization of eye movements in a drawing task.
    Coen-Cagli R; Coraggio P; Napoletano P; Schwartz O; Ferraro M; Boccignone G
    Vision Res; 2009 Mar; 49(8):810-8. PubMed ID: 19268685
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of end-goal on hand shaping.
    Ansuini C; Santello M; Massaccesi S; Castiello U
    J Neurophysiol; 2006 Apr; 95(4):2456-65. PubMed ID: 16381806
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temporal evolution and strength of neural activity in parietal cortex during eye and hand movements.
    Battaglia-Mayer A; Mascaro M; Caminiti R
    Cereb Cortex; 2007 Jun; 17(6):1350-63. PubMed ID: 16920885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporal prediction of touch instant during observation of human and robot grasping.
    Craighero L; Bonetti F; Massarenti L; Canto R; Fabbri Destro M; Fadiga L
    Brain Res Bull; 2008 Apr; 75(6):770-4. PubMed ID: 18394523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extending the mirror neuron system model, I. Audible actions and invisible grasps.
    Bonaiuto J; Rosta E; Arbib M
    Biol Cybern; 2007 Jan; 96(1):9-38. PubMed ID: 17028884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomechanical study of grasping according to the volume of the object: human versus non-human primates.
    Pouydebat E; Gorce P; Coppens Y; Bels V
    J Biomech; 2009 Feb; 42(3):266-72. PubMed ID: 19100551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A dynamic model for action understanding and goal-directed imitation.
    Erlhagen W; Mukovskiy A; Bicho E
    Brain Res; 2006 Apr; 1083(1):174-88. PubMed ID: 16616516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy.
    Brandauer B; Hermsdörfer J; Beck A; Aurich V; Gizewski ER; Marquardt C; Timmann D
    Clin Neurophysiol; 2008 Nov; 119(11):2528-37. PubMed ID: 18835217
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feature detection using spikes: the greedy approach.
    Perrinet L
    J Physiol Paris; 2004; 98(4-6):530-9. PubMed ID: 16310348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A unified framework for gesture recognition and spatiotemporal gesture segmentation.
    Alon J; Athitsos V; Yuan Q; Sclaroff S
    IEEE Trans Pattern Anal Mach Intell; 2009 Sep; 31(9):1685-99. PubMed ID: 19574627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Finger Gesture Spotting from Long Sequences Based on Multi-Stream Recurrent Neural Networks.
    Benitez-Garcia G; Haris M; Tsuda Y; Ukita N
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963623
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recognition of Japanese finger spelling gestures using neural networks.
    Machacon HT; Shiga S
    J Med Eng Technol; 2010 May; 34(4):254-60. PubMed ID: 20143958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reach/Grasp Times with Lateral Reach Obstructions.
    Hoffmann ER; Chan AHS; Lam CKY
    J Mot Behav; 2019; 51(4):351-361. PubMed ID: 30111261
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.