These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16301793)

  • 1. Anatomy of a trans-cis peptide transition during least-squares refinement of rubrerythrin.
    Stenkamp RE
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1599-602. PubMed ID: 16301793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative metal-binding sites in rubrerythrin.
    Sieker LC; Holmes M; Le Trong I; Turley S; Santarsiero BD; Liu MY; LeGall J; Stenkamp RE
    Nat Struct Biol; 1999 Apr; 6(4):308-9. PubMed ID: 10201393
    [No Abstract]   [Full Text] [Related]  

  • 3. Crystal structure of sulerythrin, a rubrerythrin-like protein from a strictly aerobic archaeon, Sulfolobus tokodaii strain 7, shows unexpected domain swapping.
    Fushinobu S; Shoun H; Wakagi T
    Biochemistry; 2003 Oct; 42(40):11707-15. PubMed ID: 14529281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Displacement of iron by zinc at the diiron site of Desulfovibrio vulgaris rubrerythrin: X-ray crystal structure and anomalous scattering analysis.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Inorg Biochem; 2004 May; 98(5):786-96. PubMed ID: 15134924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function relationships in the ferritins.
    Harrison PM; Hempstead PD; Artymiuk PJ; Andrews SC
    Met Ions Biol Syst; 1998; 35():435-77. PubMed ID: 9444766
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural genomics of Pyrococcus furiosus: X-ray crystallography reveals 3D domain swapping in rubrerythrin.
    Tempel W; Liu ZJ; Schubot FD; Shah A; Weinberg MV; Jenney FE; Arendall WB; Adams MW; Richardson JS; Richardson DC; Rose JP; Wang BC
    Proteins; 2004 Dec; 57(4):878-82. PubMed ID: 15468318
    [No Abstract]   [Full Text] [Related]  

  • 7. The 1.9 A crystal structure of the "as isolated" rubrerythrin from Desulfovibrio vulgaris: some surprising results.
    Sieker LC; Holmes M; Le Trong I; Turley S; Liu MY; LeGall J; Stenkamp RE
    J Biol Inorg Chem; 2000 Aug; 5(4):505-13. PubMed ID: 10968622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure studies on rubrerythrin: enzymatic activity in relation to the zinc movement.
    Li M; Liu MY; LeGall J; Gui LL; Liao J; Jiang T; Zhang JP; Liang DC; Chang WR
    J Biol Inorg Chem; 2003 Jan; 8(1-2):149-55. PubMed ID: 12459910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains.
    deMaré F; Kurtz DM; Nordlund P
    Nat Struct Biol; 1996 Jun; 3(6):539-46. PubMed ID: 8646540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deviations from planarity of the peptide bond in peptides and proteins.
    MacArthur MW; Thornton JM
    J Mol Biol; 1996 Dec; 264(5):1180-95. PubMed ID: 9000639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The primary structure of rubrerythrin, a protein with inorganic pyrophosphatase activity from Desulfovibrio vulgaris. Comparison with hemerythrin and rubredoxin.
    Van Beeumen JJ; Van Driessche G; Liu MY; LeGall J
    J Biol Chem; 1991 Nov; 266(31):20645-53. PubMed ID: 1657933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of three proteins containing multiple iron sites: rubrerythrin, desulfoferrodoxin, and a protein containing a six-iron cluster.
    Moura I; Tavares P; Ravi N
    Methods Enzymol; 1994; 243():216-40. PubMed ID: 7830612
    [No Abstract]   [Full Text] [Related]  

  • 14. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Am Chem Soc; 2002 Aug; 124(33):9845-55. PubMed ID: 12175244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational preferences and cis-trans isomerization of L-lactic acid residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2008 Jul; 112(30):9126-34. PubMed ID: 18605682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic characterization of 57Fe-reconstituted rubrerythrin, a non-heme iron protein with structural analogies to ribonucleotide reductase.
    Ravi N; Prickril BC; Kurtz DM; Huynh BH
    Biochemistry; 1993 Aug; 32(33):8487-91. PubMed ID: 8395205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic refinement of ricin to 2.5 A.
    Rutenber E; Katzin BJ; Ernst S; Collins EJ; Mlsna D; Ready MP; Robertus JD
    Proteins; 1991; 10(3):240-50. PubMed ID: 1881880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.