These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16302405)

  • 1. Cramer-Rao lower bounds on the estimation of the degree of polarization in coherent imaging systems.
    Roux N; Goudail F; Réfrégier P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2532-41. PubMed ID: 16302405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cramer-Rao lower bound for the estimation of the degree of polarization in active coherent imagery at low photon levels.
    Réfrégier P; Roche M; Goudail F
    Opt Lett; 2006 Dec; 31(24):3565-7. PubMed ID: 17130904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cramér-Rao Bounds for DoA Estimation of Sparse Bayesian Learning with the Laplace Prior.
    Bai H; Duarte MF; Janaswamy R
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the degree of polarization of coherent light in the presence of uniform and nonuniform illumination.
    Goudail F; Réfrégier P; Roux N
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2845-54. PubMed ID: 17047712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the degree of polarization in active coherent imagery by using the natural representation.
    Réfrégier P; Goudail F; Roux N
    J Opt Soc Am A Opt Image Sci Vis; 2004 Dec; 21(12):2292-300. PubMed ID: 15603064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision of moment-based estimation of the degree of polarization in coherent imagery without polarization device.
    Fade J; Roche M; Réfrégier P
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):483-92. PubMed ID: 18246183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cramer-Rao lower bounds on estimation of laser system pointing parameters by use of the return photon signal.
    Borah DK; Voelz DG
    Opt Lett; 2006 Apr; 31(8):1029-31. PubMed ID: 16625892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision of polarimetric orthogonal state contrast estimation in coherent images corrupted by speckle, Poisson, and additive noise.
    Dupont J; Boffety M; Goudail F
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):977-984. PubMed ID: 29877342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental information content of ocean ambient noise.
    Siderius M; Gebbie J
    J Acoust Soc Am; 2019 Sep; 146(3):1824. PubMed ID: 31590547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise.
    Bénière A; Goudail F; Alouini M; Dolfi D
    J Opt Soc Am A Opt Image Sci Vis; 2008 Apr; 25(4):919-29. PubMed ID: 18382491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation precision of the degree of polarization from a single speckle intensity image.
    Réfrégier P; Fade J; Roche M
    Opt Lett; 2007 Apr; 32(7):739-41. PubMed ID: 17339920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are Cramér-Rao lower bounds an accurate estimate for standard deviations in in vivo magnetic resonance spectroscopy?
    Landheer K; Juchem C
    NMR Biomed; 2021 Jul; 34(7):e4521. PubMed ID: 33876459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biased Cramér-Rao lower bound calculations for inequality-constrained estimators.
    Matson CL; Haji A
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2702-13. PubMed ID: 17047695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis.
    Chen Q; Zhang X; Yang Q; Ye L; Zhao M
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of parameters of a laser Doppler velocimeter and their Cramer-Rao lower bounds.
    Zhou J; Long X
    Appl Opt; 2011 Aug; 50(23):4594-603. PubMed ID: 21833137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cramer-Rao bounds for intensity interferometry measurements.
    Holmes R; Calef B; Gerwe D; Crabtree P
    Appl Opt; 2013 Jul; 52(21):5235-46. PubMed ID: 23872772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance bounds for the estimation of the degree of polarization from various sensing modalities.
    Wang W; Schulz TJ
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1274-87. PubMed ID: 20508696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cramér-Rao bounds for parametric shape estimation in inverse problems.
    Ye JC; Bresler Y; Moulin P
    IEEE Trans Image Process; 2003; 12(1):71-84. PubMed ID: 18237880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ziv-Zakai error bounds for quantum parameter estimation.
    Tsang M
    Phys Rev Lett; 2012 Jun; 108(23):230401. PubMed ID: 23003924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the use of the Cramér-Rao lower bound for diffuse optical imaging system design.
    Pera V; Brooks DH; Niedre M
    J Biomed Opt; 2014 Feb; 19(2):025002. PubMed ID: 24503635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.