BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1063 related articles for article (PubMed ID: 16303268)

  • 1. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.
    Owens DE; Peppas NA
    Int J Pharm; 2006 Jan; 307(1):93-102. PubMed ID: 16303268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size.
    Fang C; Shi B; Pei YY; Hong MH; Wu J; Chen HZ
    Eur J Pharm Sci; 2006 Jan; 27(1):27-36. PubMed ID: 16150582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles.
    Huang M; Wu W; Qian J; Wan DJ; Wei XL; Zhu JH
    Acta Pharmacol Sin; 2005 Dec; 26(12):1512-8. PubMed ID: 16297352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shielding Therapeutic Drug Carriers from the Mononuclear Phagocyte System: A Review.
    Sathyamoorthy N; Dhanaraju MD
    Crit Rev Ther Drug Carrier Syst; 2016; 33(6):489-567. PubMed ID: 27992308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of PEG chain on the complement activation suppression and longevity in vivo prolongation of the PCL biomedical nanoparticles.
    Shan X; Yuan Y; Liu C; Tao X; Sheng Y; Xu F
    Biomed Microdevices; 2009 Dec; 11(6):1187-94. PubMed ID: 19609680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles.
    Gaucher G; Asahina K; Wang J; Leroux JC
    Biomacromolecules; 2009 Feb; 10(2):408-16. PubMed ID: 19133718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer.
    Shan X; Liu C; Yuan Y; Xu F; Tao X; Sheng Y; Zhou H
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):303-11. PubMed ID: 19450955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers.
    Duan Y; Xu J; Lin Y; Yu H; Gong T; Li Y; Zhang Z
    J Biomed Mater Res A; 2008 Nov; 87(2):515-23. PubMed ID: 18186066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers.
    Chen C; Yu CH; Cheng YC; Yu PH; Cheung MK
    Biomaterials; 2006 Sep; 27(27):4804-14. PubMed ID: 16740306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan.
    Sheng Y; Liu C; Yuan Y; Tao X; Yang F; Shan X; Zhou H; Xu F
    Biomaterials; 2009 Apr; 30(12):2340-8. PubMed ID: 19150737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable stealth function for hollow polyelectrolyte microcapsules through a poly(ethylene glycol) grafted polyelectrolyte adlayer.
    Wattendorf U; Kreft O; Textor M; Sukhorukov GB; Merkle HP
    Biomacromolecules; 2008 Jan; 9(1):100-8. PubMed ID: 18078322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol).
    Zahr AS; Davis CA; Pishko MV
    Langmuir; 2006 Sep; 22(19):8178-85. PubMed ID: 16952259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-functionalized nanoparticles for controlled drug delivery.
    Choi SW; Kim WS; Kim JH
    Methods Mol Biol; 2005; 303():121-31. PubMed ID: 15923680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation.
    Rabanel JM; Hildgen P; Banquy X
    J Control Release; 2014 Jul; 185():71-87. PubMed ID: 24768790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate.
    Ishihara T; Kubota T; Choi T; Higaki M
    J Pharmacol Exp Ther; 2009 May; 329(2):412-7. PubMed ID: 19244548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of NMR spectroscopy to the characterization of PEG-stabilized lipid nanoparticles.
    Garcia-Fuentes M; Torres D; Martín-Pastor M; Alonso MJ
    Langmuir; 2004 Sep; 20(20):8839-45. PubMed ID: 15379515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEGylated nanocarriers for systemic delivery.
    Jain NK; Nahar M
    Methods Mol Biol; 2010; 624():221-34. PubMed ID: 20217599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro.
    Gou M; Zheng L; Peng X; Men K; Zheng X; Zeng S; Guo G; Luo F; Zhao X; Chen L; Wei Y; Qian Z
    Int J Pharm; 2009 Jun; 375(1-2):170-6. PubMed ID: 19427143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of surface-modified poly(D,L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone.
    Choi SW; Kim JH
    J Control Release; 2007 Sep; 122(1):24-30. PubMed ID: 17628158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.