BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1064 related articles for article (PubMed ID: 16303268)

  • 41. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery.
    Mehta P; Shende P
    Cell Biochem Funct; 2023 Dec; 41(8):1031-1043. PubMed ID: 37933222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel.
    Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate.
    Li X; Li R; Qian X; Ding Y; Tu Y; Guo R; Hu Y; Jiang X; Guo W; Liu B
    Eur J Pharm Biopharm; 2008 Nov; 70(3):726-34. PubMed ID: 18634874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery.
    Shen Y; Tang H; Zhan Y; Van Kirk EA; Murdoch WJ
    Nanomedicine; 2009 Jun; 5(2):192-201. PubMed ID: 19223244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells.
    Hu Y; Xie J; Tong YW; Wang CH
    J Control Release; 2007 Mar; 118(1):7-17. PubMed ID: 17241684
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles.
    Sun G; Hagooly A; Xu J; Nyström AM; Li Z; Rossin R; Moore DA; Wooley KL; Welch MJ
    Biomacromolecules; 2008 Jul; 9(7):1997-2006. PubMed ID: 18510359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation.
    Chambers E; Mitragotri S
    Exp Biol Med (Maywood); 2007 Jul; 232(7):958-66. PubMed ID: 17609513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of PLL-g-PEG-DNA nanoparticles for the delivery of therapeutic DNA.
    Rimann M; Lühmann T; Textor M; Guerino B; Ogier J; Hall H
    Bioconjug Chem; 2008 Feb; 19(2):548-57. PubMed ID: 18173226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier.
    Liu L; Guo K; Lu J; Venkatraman SS; Luo D; Ng KC; Ling EA; Moochhala S; Yang YY
    Biomaterials; 2008 Apr; 29(10):1509-17. PubMed ID: 18155137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering Well-Characterized PEG-Coated Nanoparticles for Elucidating Biological Barriers to Drug Delivery.
    Yang Q; Lai SK
    Methods Mol Biol; 2017; 1530():125-137. PubMed ID: 28150200
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M
    J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle.
    Lu W; Wan J; She Z; Jiang X
    J Control Release; 2007 Mar; 118(1):38-53. PubMed ID: 17240471
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates.
    Blättler TM; Pasche S; Textor M; Griesser HJ
    Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents.
    Bae Y; Diezi TA; Zhao A; Kwon GS
    J Control Release; 2007 Oct; 122(3):324-30. PubMed ID: 17669540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers.
    Shehata T; Ogawara K; Higaki K; Kimura T
    Int J Pharm; 2008 Jul; 359(1-2):272-9. PubMed ID: 18486370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.
    Suk JS; Xu Q; Kim N; Hanes J; Ensign LM
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):28-51. PubMed ID: 26456916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles.
    Nakamura M; Hayashi K; Nakano M; Kanadani T; Miyamoto K; Kori T; Horikawa K
    ACS Nano; 2015 Feb; 9(2):1058-71. PubMed ID: 25629765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phagocytosis of synthetic particles in earthworms. Effect of antigenic stimulation and opsonization.
    Bilej M; Vĕtvicka V; Tucková L; Trebichavský I; Koukal M; Síma P
    Folia Biol (Praha); 1990; 36(6):273-80. PubMed ID: 2279582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.
    Pitek AS; Jameson SA; Veliz FA; Shukla S; Steinmetz NF
    Biomaterials; 2016 May; 89():89-97. PubMed ID: 26950168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanomedicine for respiratory diseases.
    Swai H; Semete B; Kalombo L; Chelule P; Kisich K; Sievers B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(3):255-63. PubMed ID: 20049795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.