BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16303963)

  • 1. Accumulation of DNA, nuclear and mitochondrial debris, and ROS at sites of age-related cortical cataract in mice.
    Pendergrass W; Penn P; Possin D; Wolf N
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4661-70. PubMed ID: 16303963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray induced cataract is preceded by LEC loss, and coincident with accumulation of cortical DNA, and ROS; similarities with age-related cataracts.
    Pendergrass W; Zitnik G; Tsai R; Wolf N
    Mol Vis; 2010 Aug; 16():1496-513. PubMed ID: 20806081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular debris and ROS in age-related cortical cataract are caused by inappropriate involution of the surface epithelial cells into the lens cortex.
    Pendergrass WR; Penn PE; Possin DE; Wolf NS
    Mol Vis; 2006 Jun; 12():712-24. PubMed ID: 16807531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related retention of fiber cell nuclei and nuclear fragments in the lens cortices of multiple species.
    Pendergrass W; Zitnik G; Urfer SR; Wolf N
    Mol Vis; 2011; 17():2672-84. PubMed ID: 22065920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and subcapsular cataracts: significance of physical forces.
    Pau H
    Ophthalmologica; 2006; 220(1):1-5. PubMed ID: 16374041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation cataracts: mechanisms involved in their long delayed occurrence but then rapid progression.
    Wolf N; Pendergrass W; Singh N; Swisshelm K; Schwartz J
    Mol Vis; 2008 Feb; 14():274-85. PubMed ID: 18334943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal laser scanning microscopy imaging of dynamic TMRE movement in the mitochondria of epithelial and superficial cortical fiber cells of bovine lenses.
    Bantseev V; Sivak JG
    Mol Vis; 2005 Jul; 11():518-23. PubMed ID: 16052167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The oxidative stress in the cataract formation].
    Obara Y
    Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.
    Vrensen GFJM; Otto C; Lenferink A; Liszka B; Montenegro GA; Barraquer RI; Michael R
    Exp Eye Res; 2016 Apr; 145():100-109. PubMed ID: 26611157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D; Lamba OP; Yappert MC
    Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographical distribution of lactate dehydrogenase activity in human clear eye lenses and in lenses with different types of senile cataract: a histochemical investigation.
    Pau H; Hartwig HG; Fassbender R
    Graefes Arch Clin Exp Ophthalmol; 1997 Oct; 235(10):611-7. PubMed ID: 9349944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cataract formation in a strain of rats selected for high oxidative stress.
    Marsili S; Salganik RI; Albright CD; Freel CD; Johnsen S; Peiffer RL; Costello MJ
    Exp Eye Res; 2004 Nov; 79(5):595-612. PubMed ID: 15500819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p62/Sequestosome 1 levels increase and phosphorylation is altered in Cx50D47A lenses, but deletion of p62/sequestosome 1 does not improve transparency.
    Jara O; Mysliwiec H; Minogue PJ; Berthoud VM; Beyer EC
    Mol Vis; 2020; 26():204-215. PubMed ID: 32214786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure of UVR-B-induced cataract and repair visualized with electron microscopy.
    Meyer LM; Wegener AR; Holz FG; Kronschläger M; Bergmanson JP; Soderberg PG
    Acta Ophthalmol; 2014 Nov; 92(7):635-43. PubMed ID: 24666994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human lens epithelial layer in cortical cataract.
    Kalariya N; Rawal UM; Vasavada AR
    Indian J Ophthalmol; 1998 Sep; 46(3):159-62. PubMed ID: 10085629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Src family kinases in cortical cataract formation.
    Zhou J; Menko AS
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2293-300. PubMed ID: 12091430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of the Sparc locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation.
    Bassuk JA; Birkebak T; Rothmier JD; Clark JM; Bradshaw A; Muchowski PJ; Howe CC; Clark JI; Sage EH
    Exp Eye Res; 1999 Mar; 68(3):321-31. PubMed ID: 10079140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estradiol attenuates mitochondrial depolarization in polyol-stressed lens epithelial cells.
    Flynn JM; Cammarata PR
    Mol Vis; 2006 Apr; 12():271-82. PubMed ID: 16617294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide levels in human lens: regional distribution in different forms of senile cataract.
    Deussen A; Pau H
    Exp Eye Res; 1989 Jan; 48(1):37-47. PubMed ID: 2920783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.