BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16304371)

  • 21. Constitutive uncoupling of the controls for growth and differentiation in myeloid leukemia and the development of cancer.
    Sachs L
    J Natl Cancer Inst; 1980 Oct; 65(4):675-9. PubMed ID: 6999201
    [No Abstract]   [Full Text] [Related]  

  • 22. In vivo differentiation of mast cells from acute myeloid leukemia blasts carrying a novel activating ligand-independent C-kit mutation.
    Beghini A; Cairoli R; Morra E; Larizza L
    Blood Cells Mol Dis; 1998 Jun; 24(2):262-70. PubMed ID: 9714703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts.
    Gozzini A; Santini V
    Ann Hematol; 2005 Dec; 84 Suppl 1():54-60. PubMed ID: 16228241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells.
    Moore MA; Dorn DC; Schuringa JJ; Chung KY; Morrone G
    Exp Hematol; 2007 Apr; 35(4 Suppl 1):105-16. PubMed ID: 17379095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sterile transcription of immunoglobulin/T-cell receptor genes and other evidence of early lymphoid differentiation in acute myelogenous leukemia.
    Williams L; Moscinski LC
    Leukemia; 1993 Sep; 7(9):1423-31. PubMed ID: 8371592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanism of microRNA involvement in genesis of myelodysplastic syndrome and its transformation to acute myeloid leukemia.
    Liao R; Xu Y; Chen M; Chen X; Zhan X; Sun J
    Hematology; 2013 Jul; 18(4):191-7. PubMed ID: 23321417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proliferation and bone marrow engraftment of AML blasts is dependent on β-catenin signalling.
    Siapati EK; Papadaki M; Kozaou Z; Rouka E; Michali E; Savvidou I; Gogos D; Kyriakou D; Anagnostopoulos NI; Vassilopoulos G
    Br J Haematol; 2011 Jan; 152(2):164-74. PubMed ID: 21118196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Overexpression of differentiation inhibitory factor/nm23 in acute myeloid leukemia].
    Kado J; Yokoyama A
    Rinsho Ketsueki; 1998 Feb; 39(2):92-4. PubMed ID: 9545807
    [No Abstract]   [Full Text] [Related]  

  • 29. MicroRNAs: new players in AML pathogenesis.
    Nicoloso MS; Jasra B; Calin GA
    Cancer Treat Res; 2010; 145():169-81. PubMed ID: 20306251
    [No Abstract]   [Full Text] [Related]  

  • 30. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia.
    Haferlach T
    Hematology Am Soc Hematol Educ Program; 2008; ():400-11. PubMed ID: 19074117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype.
    Matsuno N; Osato M; Yamashita N; Yanagida M; Nanri T; Fukushima T; Motoji T; Kusumoto S; Towatari M; Suzuki R; Naoe T; Nishii K; Shigesada K; Ohno R; Mitsuya H; Ito Y; Asou N
    Leukemia; 2003 Dec; 17(12):2492-9. PubMed ID: 14562119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Replication errors in hematological neoplasias: genomic instability in progression of disease is different among different types of leukemia.
    Ohyashiki JH; Ohyashiki K; Aizawa S; Kawakubo K; Shimamoto T; Iwama H; Hayashi S; Toyama K
    Clin Cancer Res; 1996 Sep; 2(9):1583-9. PubMed ID: 9816337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AML1/RUNX1 mutations are infrequent, but related to AML-M0, acquired trisomy 21, and leukemic transformation in pediatric hematologic malignancies.
    Taketani T; Taki T; Takita J; Tsuchida M; Hanada R; Hongo T; Kaneko T; Manabe A; Ida K; Hayashi Y
    Genes Chromosomes Cancer; 2003 Sep; 38(1):1-7. PubMed ID: 12874780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angiopoietin1 contributes to the maintenance of cell quiescence in EVI1(high) leukemia cells.
    Ichihara E; Kaneda K; Saito Y; Yamakawa N; Morishita K
    Biochem Biophys Res Commun; 2011 Dec; 416(3-4):239-45. PubMed ID: 22033412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted therapy of acute myeloid leukemia.
    Carneiro BA; Altman JK; Kaplan JB; Ossenkoppele G; Swords R; Platanias LC; Giles FJ
    Expert Rev Anticancer Ther; 2015 Apr; 15(4):399-413. PubMed ID: 25623136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Essential Transcriptional Function of BRD4 in Acute Myeloid Leukemia.
    Roe JS; Vakoc CR
    Cold Spring Harb Symp Quant Biol; 2016; 81():61-66. PubMed ID: 28174254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic Vulnerabilities of Transcription Factors in AML.
    Khan I; Eklund EE; Gartel AL
    Mol Cancer Ther; 2021 Feb; 20(2):229-237. PubMed ID: 33158995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disconnection of genes coding for self-renewal and differentiation: a possible mechanism of diversity in acute myeloid leukemias.
    von Melchner H; Höffken K
    Blut; 1985 May; 50(5):257-65. PubMed ID: 3857946
    [No Abstract]   [Full Text] [Related]  

  • 39. Cytokines and myeloid-specific genes: patterns of expression and possible role in proliferation and differentiation of acute myelogenous leukemia cells.
    Lübbert M; Mertelsmann R
    Cancer Treat Res; 1993; 64():171-87. PubMed ID: 8095792
    [No Abstract]   [Full Text] [Related]  

  • 40. Constitutive uncoupling of pathways of gene expression that control growth and differentiation in myeloid leukemia: a model for the origin and progression of malignancy.
    Sachs L
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):6152-6. PubMed ID: 6934543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.