These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16304676)

  • 41. The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil.
    Luo Q; Zhang X; Wang H; Qian Y
    J Hazard Mater; 2005 May; 121(1-3):187-94. PubMed ID: 15885421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils.
    Perfumo A; Banat IM; Marchant R; Vezzulli L
    Chemosphere; 2007 Jan; 66(1):179-84. PubMed ID: 16782171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.
    Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z
    J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation.
    Meers E; Tack FM; Verloo MG
    Chemosphere; 2008 Jan; 70(3):358-63. PubMed ID: 17870142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol-contaminated soil.
    Fan X; Wang H; Luo Q; Ma J; Zhang X
    J Hazard Mater; 2007 Sep; 148(1-2):29-37. PubMed ID: 17418487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of bioassays by testing whole soil and their water extract from contaminated sites.
    Leitgib L; Kálmán J; Gruiz K
    Chemosphere; 2007 Jan; 66(3):428-34. PubMed ID: 16860849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils.
    Taki H; Syutsubo K; Mattison RG; Harayama S
    Biodegradation; 2007 Feb; 18(1):17-26. PubMed ID: 16485082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Influence of operating parameters on surfactant-enhanced washing to remedy PAHs contaminated soil].
    Wu W; Jiang L; Chen JJ; Peng S
    Huan Jing Ke Xue; 2012 Mar; 33(3):965-70. PubMed ID: 22624395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non acclimated, complex source of microorganisms.
    Di Toro S; Zanaroli G; Fava F
    Microb Cell Fact; 2006 Mar; 5():11. PubMed ID: 16549016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Utilization of surface-active compounds derived from biosolids to remediate polycyclic aromatic hydrocarbons contaminated sediment soil.
    Vaidyanathan VK; Rathankumar AK; Senthil Kumar P; Rangasamy G; Saikia K; Rajendran DS; Venkataraman S; Varjani S
    Environ Res; 2022 Dec; 215(Pt 1):114180. PubMed ID: 36057335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Microbiologic/hygienic evaluation of the risk potential of bacteria from soil and water sources in combination with biotechnologic risks of soil restoration].
    Dott W; Kämpfer P
    Zentralbl Hyg Umweltmed; 1997 Aug; 200(2-3):163-71. PubMed ID: 9636987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of ultrasonication time on elution of super heavy oil and its biomarkers from aging soils using a Triton X-100 micellar solution.
    Ji G; Zhou G
    J Hazard Mater; 2010 Jul; 179(1-3):281-8. PubMed ID: 20353881
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solubilization of 4,4'-dibromodiphenyl ether under combined TX-100 and cosolvents.
    Yang X; Lu G; Wang R; Guo C; Zhang H; Dang Z
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3856-64. PubMed ID: 25269841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. (An)aerobic breakdown of chelating agents used in household detergents.
    Egli T
    Microbiol Sci; 1988 Feb; 5(2):36-41. PubMed ID: 3079216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation.
    Muñoz-Morales M; Braojos M; Sáez C; Cañizares P; Rodrigo MA
    J Hazard Mater; 2017 Oct; 339():232-238. PubMed ID: 28654787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics.
    Chu W; Chan KH
    Sci Total Environ; 2003 May; 307(1-3):83-92. PubMed ID: 12711427
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exogenous enzyme supplements to promote treatment efficiency in constructed wetlands.
    Shackle V; Freeman C; Reynolds B
    Sci Total Environ; 2006 May; 361(1-3):18-24. PubMed ID: 16213577
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regeneration of Washing Effluents for Remediation of Petroleum-Hydrocarbons-Contaminated Soil by Corncob-Based Biomass Materials.
    Xu Z; Guo H; Liu T; Zhang W; Ma X
    ACS Omega; 2019 Nov; 4(20):18711-18717. PubMed ID: 31737832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrolysis with diamond anodes of the effluents of a combined soil washing - ZVI dechlorination process.
    Carvalho de Almeida C; Muñoz-Morales M; Sáez C; Cañizares P; Martínez-Huitle CA; Rodrigo MA
    J Hazard Mater; 2019 May; 369():577-583. PubMed ID: 30818122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.