These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 16305140)
1. Uptake and modeling of pesticides by roots and shoots of parrotfeather (Myriophyllum aquaticum). Turgut C Environ Sci Pollut Res Int; 2005 Nov; 12(6):342-6. PubMed ID: 16305140 [TBL] [Abstract][Full Text] [Related]
2. Uptake and translocation of non-ionised pesticides in the emergent aquatic plant parrot feather Myriophyllum aquaticum. de Carvalho RF; Bromilow RH; Greenwood R Pest Manag Sci; 2007 Aug; 63(8):798-802. PubMed ID: 17573679 [TBL] [Abstract][Full Text] [Related]
3. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing. Knauer K; Mohr S; Feiler U Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Cadmium Scavenging Potential of Canna indica L. Solanki P; Narayan M; Rabha AK; Srivastava RK Bull Environ Contam Toxicol; 2018 Oct; 101(4):446-450. PubMed ID: 30116850 [TBL] [Abstract][Full Text] [Related]
5. Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Su YH; Zhu YG Environ Pollut; 2006 Jan; 139(1):32-9. PubMed ID: 15993528 [TBL] [Abstract][Full Text] [Related]
6. Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides. Tunić T; Knežević V; Kerkez Đ; Tubić A; Šunjka D; Lazić S; Brkić D; Teodorović I Environ Toxicol Chem; 2015 Sep; 34(9):2104-15. PubMed ID: 25943248 [TBL] [Abstract][Full Text] [Related]
7. Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution. Su YH; Zhu YG Environ Sci Pollut Res Int; 2005; 12(1):21-7. PubMed ID: 15768737 [TBL] [Abstract][Full Text] [Related]
8. Interaction between cadmium and atrazine during uptake by rice seedlings (Oryza sativa L.). Su YH; Zhu YG; Lin AJ; Zhang XH Chemosphere; 2005 Aug; 60(6):802-9. PubMed ID: 15936797 [TBL] [Abstract][Full Text] [Related]
9. Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana. Sulmon C; Gouesbet G; Binet F; Martin-Laurent F; El Amrani A; Couée I Environ Pollut; 2007 Jan; 145(2):507-15. PubMed ID: 16769161 [TBL] [Abstract][Full Text] [Related]
10. Disposition of atrazine metabolites following uptake and degradation of atrazine in switchgrass. Albright VC; Coats JR Int J Phytoremediation; 2014; 16(1):62-72. PubMed ID: 24912215 [TBL] [Abstract][Full Text] [Related]
11. The impact of pesticides toward parrotfeather when applied at the predicted environmental concentration. Turgut C Chemosphere; 2007 Jan; 66(3):469-73. PubMed ID: 16857236 [TBL] [Abstract][Full Text] [Related]
12. Distribution of the herbicide atrazine in a microcosm with riparian forest plants. Bicalho ST; Langenbach T J Environ Sci Health B; 2012; 47(6):505-11. PubMed ID: 22494373 [TBL] [Abstract][Full Text] [Related]
13. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Huang H; Zhang S; Shan XQ; Chen BD; Zhu YG; Bell JN Environ Pollut; 2007 Mar; 146(2):452-7. PubMed ID: 16935399 [TBL] [Abstract][Full Text] [Related]
14. Uptake and transport mechanisms for cadmium by Myriophyllum aquaticum in a constructed wetland. Huang Z; Gao J; Zhao G; He J; Mao Y; Kang H; Song Z Ecotoxicol Environ Saf; 2024 Sep; 283():116846. PubMed ID: 39116693 [TBL] [Abstract][Full Text] [Related]
15. Endothall behavior in Myriophyllum spicatum and Hydrilla verticillata. Ortiz MF; Nissen SJ; Gray CJ Pest Manag Sci; 2019 Nov; 75(11):2942-2947. PubMed ID: 30854787 [TBL] [Abstract][Full Text] [Related]
16. Atrazine and terbutryn degradation in deposits from groundwater environment within the boreal region in Lahti, Finland. Talja KM; Kaukonen S; Kilpi-Koski J; Malin I; Kairesalo T; Romantschuk M; Tuominen J; Kontro MH J Agric Food Chem; 2008 Dec; 56(24):11962-8. PubMed ID: 19053391 [TBL] [Abstract][Full Text] [Related]
17. Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum aestivum L.). Ju C; Dong S; Zhang H; Yao S; Wang F; Cao D; Xu S; Fang H; Yu Y Chemosphere; 2020 Jun; 248():126024. PubMed ID: 32004891 [TBL] [Abstract][Full Text] [Related]
18. Exposure of Juncus effusus to seven perfluoroalkyl acids: Uptake, accumulation and phytotoxicity. Zhang W; Zhang D; Zagorevski DV; Liang Y Chemosphere; 2019 Oct; 233():300-308. PubMed ID: 31176131 [TBL] [Abstract][Full Text] [Related]
19. Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine. Teodorović I; Knežević V; Tunić T; Cučak M; Lečić JN; Leovac A; Tumbas II Environ Toxicol Chem; 2012 Feb; 31(2):417-26. PubMed ID: 22095561 [TBL] [Abstract][Full Text] [Related]
20. Uptake, Translocation, and Metabolism of Phenols by Submerged Rooted Macrophyte, Water Milfoil (Myriophyllum elatinoides). Ando D; Fujisawa T; Katagi T J Agric Food Chem; 2015 Jun; 63(21):5189-95. PubMed ID: 25984815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]