These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16305551)

  • 1. Using siclopps for the discovery of novel antimicrobial peptides and their targets.
    Nilsson LO; Louassini M; Abel-Santos E
    Protein Pept Lett; 2005 Nov; 12(8):795-9. PubMed ID: 16305551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptides come round: using SICLOPPS libraries for early stage drug discovery.
    Lennard KR; Tavassoli A
    Chemistry; 2014 Aug; 20(34):10608-14. PubMed ID: 25043886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Production of Cyclic Peptide Libraries with SICLOPPS.
    Osher EL; Tavassoli A
    Methods Mol Biol; 2017; 1495():27-39. PubMed ID: 27714608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SICLOPPS cyclic peptide libraries in drug discovery.
    Tavassoli A
    Curr Opin Chem Biol; 2017 Jun; 38():30-35. PubMed ID: 28258013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Selections with SICLOPPS Libraries: Toward the Identification of Novel Protein-Protein Interaction Inhibitors and Chemical Tools.
    Castillo F; Tavassoli A
    Methods Mol Biol; 2019; 2001():317-328. PubMed ID: 31134578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traceless Production of Cyclic Peptide Libraries in E. coli.
    Townend JE; Tavassoli A
    ACS Chem Biol; 2016 Jun; 11(6):1624-30. PubMed ID: 27027149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli.
    Tavassoli A; Benkovic SJ
    Nat Protoc; 2007; 2(5):1126-33. PubMed ID: 17546003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide discovery using bacterial display and flow cytometry.
    Getz JA; Schoep TD; Daugherty PS
    Methods Enzymol; 2012; 503():75-97. PubMed ID: 22230566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Discovery of Peptide Macrocycle Rescuers of Pathogenic Protein Misfolding and Aggregation by Integrating SICLOPPS Technology and Ultrahigh-Throughput Screening in Bacteria.
    Delivoria DC; Skretas G
    Methods Mol Biol; 2022; 2371():215-246. PubMed ID: 34596851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Throughput Approach To Identify Compounds That Impair Envelope Integrity in Escherichia coli.
    Baker KR; Jana B; Franzyk H; Guardabassi L
    Antimicrob Agents Chemother; 2016 Oct; 60(10):5995-6002. PubMed ID: 27458225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of a genetically encoded, photoactivatable intein for the controlled production of cyclic peptides.
    Böcker JK; Friedel K; Matern JC; Bachmann AL; Mootz HD
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2116-20. PubMed ID: 25557882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond.
    Valentine J; Tavassoli A
    Methods Enzymol; 2018; 610():117-134. PubMed ID: 30390796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease.
    Cheng L; Naumann TA; Horswill AR; Hong SJ; Venters BJ; Tomsho JW; Benkovic SJ; Keiler KC
    Protein Sci; 2007 Aug; 16(8):1535-42. PubMed ID: 17600141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput synthesis and screening of cyclic peptide antibiotics.
    Xiao Q; Pei D
    J Med Chem; 2007 Jun; 50(13):3132-7. PubMed ID: 17547386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput discovery of broad-spectrum peptide antibiotics.
    Rathinakumar R; Wimley WC
    FASEB J; 2010 Sep; 24(9):3232-8. PubMed ID: 20410445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular expression of Peptide fusions for demonstration of protein essentiality in bacteria.
    Benson RE; Gottlin EB; Christensen DJ; Hamilton PT
    Antimicrob Agents Chemother; 2003 Sep; 47(9):2875-81. PubMed ID: 12936988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide library screening as a tool to derive potent therapeutics: current approaches and future strategies.
    K Madden S
    Future Med Chem; 2021 Jan; 13(2):95-98. PubMed ID: 33275071
    [No Abstract]   [Full Text] [Related]  

  • 18. Discovery of Next-Generation Antimicrobials through Bacterial Self-Screening of Surface-Displayed Peptide Libraries.
    Tucker AT; Leonard SP; DuBois CD; Knauf GA; Cunningham AL; Wilke CO; Trent MS; Davies BW
    Cell; 2018 Jan; 172(3):618-628.e13. PubMed ID: 29307492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents.
    Riahifard N; Mozaffari S; Aldakhil T; Nunez F; Alshammari Q; Alshammari S; Yamaki J; Parang K; Tiwari RK
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30360400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a De Novo Aggregating Antimicrobial Peptide and a Bacterial Conjugation-Based Delivery System.
    Collins LT; Otoupal PB; Campos JK; Courtney CM; Chatterjee A
    Biochemistry; 2019 Mar; 58(11):1521-1526. PubMed ID: 30403128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.