BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 16306164)

  • 1. Challenging the sleep homeostat does not influence the thermoregulatory system in men: evidence from a nap vs. sleep-deprivation study.
    Kräuchi K; Knoblauch V; Wirz-Justice A; Cajochen C
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R1052-61. PubMed ID: 16306164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human sleep-wake cycle reconsidered from a thermoregulatory point of view.
    Kräuchi K
    Physiol Behav; 2007 Feb; 90(2-3):236-45. PubMed ID: 17049364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophysiologic aspects of the three-process-model of sleepiness regulation.
    Kräuchi K; Cajochen C; Wirz-Justice A
    Clin Sports Med; 2005 Apr; 24(2):287-300, ix. PubMed ID: 15892924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronobiological characterization of women with primary vasospastic syndrome: body heat loss capacity in relation to sleep initiation and phase of entrainment.
    Vollenweider S; Wirz-Justice A; Flammer J; Orgül S; Kräuchi K
    Am J Physiol Regul Integr Comp Physiol; 2008 Feb; 294(2):R630-8. PubMed ID: 18046019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predominance of distal skin temperature changes at sleep onset across menstrual and circadian phases.
    Shechter A; Boudreau P; Varin F; Boivin DB
    J Biol Rhythms; 2011 Jun; 26(3):260-70. PubMed ID: 21628553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bright Light Decreases Peripheral Skin Temperature in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (II).
    Lok R; Woelders T; van Koningsveld MJ; Oberman K; Fuhler SG; Beersma DGM; Hut RA
    J Biol Rhythms; 2022 Aug; 37(4):417-428. PubMed ID: 35723003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian clues to sleep onset mechanisms.
    Kräuchi K; Wirz-Justice A
    Neuropsychopharmacology; 2001 Nov; 25(5 Suppl):S92-6. PubMed ID: 11682282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waking up properly: is there a role of thermoregulation in sleep inertia?
    Kräuchi K; Cajochen C; Wirz-Justice A
    J Sleep Res; 2004 Jun; 13(2):121-7. PubMed ID: 15175091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of frontal EEG activity, sleepiness and body temperature under high and low sleep pressure.
    Cajochen C; Knoblauch V; Kräuchi K; Renz C; Wirz-Justice A
    Neuroreport; 2001 Jul; 12(10):2277-81. PubMed ID: 11447349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Young women with major depression live on higher homeostatic sleep pressure than healthy controls.
    Frey S; Birchler-Pedross A; Hofstetter M; Brunner P; Götz T; Münch M; Blatter K; Knoblauch V; Wirz-Justice A; Cajochen C
    Chronobiol Int; 2012 Apr; 29(3):278-94. PubMed ID: 22390241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities.
    Van Someren EJ
    Chronobiol Int; 2000 May; 17(3):313-54. PubMed ID: 10841209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-night comparison in the sleep laboratory as a tool to challenge the relationship between sleep initiation, cardiophysiological and thermoregulatory changes in women with difficulties initiating sleep and thermal discomfort.
    Anders D; Gompper B; Kräuchi K
    Physiol Behav; 2013 Apr; 114-115():77-82. PubMed ID: 23474133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel temperature-controlled sleep system to improve sleep: a proof-of-concept study.
    Haghayegh S; Khoshnevis S; Smolensky MH; Hermida RC; Castriotta RJ; Schernhammer E; Diller KR
    J Sleep Res; 2022 Dec; 31(6):e13662. PubMed ID: 35852479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of naps: effects on post-nap sleepiness levels.
    Lavie P; Weler B
    Electroencephalogr Clin Neurophysiol; 1989 Mar; 72(3):218-24. PubMed ID: 2465124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diurnal repeated exercise promotes slow-wave activity and fast-sigma power during sleep with increase in body temperature: a human crossover trial.
    Aritake-Okada S; Tanabe K; Mochizuki Y; Ochiai R; Hibi M; Kozuma K; Katsuragi Y; Ganeko M; Takeda N; Uchida S
    J Appl Physiol (1985); 2019 Jul; 127(1):168-177. PubMed ID: 31095458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A relationship between heat loss and sleepiness: effects of postural change and melatonin administration.
    Kräuchi K; Cajochen C; Wirz-Justice A
    J Appl Physiol (1985); 1997 Jul; 83(1):134-9. PubMed ID: 9216955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of caffeine on skin and core temperatures, alertness, and recovery sleep during circadian misalignment.
    McHill AW; Smith BJ; Wright KP
    J Biol Rhythms; 2014 Apr; 29(2):131-43. PubMed ID: 24682207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in the circadian and homeostatic regulation of human sleep.
    Cajochen C; Münch M; Knoblauch V; Blatter K; Wirz-Justice A
    Chronobiol Int; 2006; 23(1-2):461-74. PubMed ID: 16687319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoregulatory effects of melatonin in relation to sleepiness.
    Kräuchi K; Cajochen C; Pache M; Flammer J; Wirz-Justice A
    Chronobiol Int; 2006; 23(1-2):475-84. PubMed ID: 16687320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between the circadian rhythms of finger temperature, core temperature, sleep latency, and subjective sleepiness.
    Gradisar M; Lack L
    J Biol Rhythms; 2004 Apr; 19(2):157-63. PubMed ID: 15038855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.