BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16306255)

  • 1. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.
    Frey Law LA; Shields RK
    J Appl Physiol (1985); 2006 Mar; 100(3):1027-36. PubMed ID: 16306255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing.
    Dudley-Javoroski S; Littmann AE; Iguchi M; Shields RK
    J Appl Physiol (1985); 2008 Jun; 104(6):1574-82. PubMed ID: 18436697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical models of human paralyzed muscle after long-term training.
    Law LA; Shields RK
    J Biomech; 2007; 40(12):2587-95. PubMed ID: 17316653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doublet electrical stimulation enhances torque production in people with spinal cord injury.
    Chang YJ; Shields RK
    Neurorehabil Neural Repair; 2011 Jun; 25(5):423-32. PubMed ID: 21304018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
    Shields RK; Dudley-Javoroski S; Littmann AE
    J Appl Physiol (1985); 2006 Aug; 101(2):556-65. PubMed ID: 16575026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile properties of human thenar muscles paralyzed by spinal cord injury.
    Thomas CK
    Muscle Nerve; 1997 Jul; 20(7):788-99. PubMed ID: 9179150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries.
    Ding J; Lee SC; Johnston TE; Wexler AS; Scott WB; Binder-Macleod SA
    Muscle Nerve; 2005 Jun; 31(6):702-12. PubMed ID: 15742371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury.
    Thomas CK; Zaidner EY; Calancie B; Broton JG; Bigland-Ritchie BR
    Exp Neurol; 1997 Dec; 148(2):414-23. PubMed ID: 9417821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion.
    Perumal R; Wexler AS; Binder-Macleod SA
    J Neuroeng Rehabil; 2008 Dec; 5():33. PubMed ID: 19077188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Muscle Nerve; 2007 Apr; 35(4):471-8. PubMed ID: 17212347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation pattern that maximizes force in paralyzed and control whole thenar muscles.
    Griffin L; Godfrey S; Thomas CK
    J Neurophysiol; 2002 May; 87(5):2271-8. PubMed ID: 11976366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical models use varying parameter strategies to represent paralyzed muscle force properties: a sensitivity analysis.
    Frey Law LA; Shields RK
    J Neuroeng Rehabil; 2005 May; 2():12. PubMed ID: 15927064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury.
    Häger-Ross CK; Klein CS; Thomas CK
    J Neurophysiol; 2006 Jul; 96(1):165-74. PubMed ID: 16611836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Phys Ther; 2006 Jun; 86(6):788-99. PubMed ID: 16737404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
    Shields RK; Dudley-Javoroski S
    Clin Neurophysiol; 2013 Sep; 124(9):1853-60. PubMed ID: 23673062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    Neurorehabil Neural Repair; 2007; 21(2):169-79. PubMed ID: 17312092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential fatigue of paralyzed thenar muscles by stimuli of different intensities.
    Godfrey S; Butler JE; Griffin L; Thomas CK
    Muscle Nerve; 2002 Jul; 26(1):122-31. PubMed ID: 12115957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased blood pressure can reduce fatigue of thenar muscles paralyzed after spinal cord injury.
    Butler JE; Ribot-Ciscar E; Zijdewind I; Thomas CK
    Muscle Nerve; 2004 Apr; 29(4):575-84. PubMed ID: 15052623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.