BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 16306259)

  • 1. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin.
    Li X; Gutierrez DV; Hanson MG; Han J; Mark MD; Chiel H; Hegemann P; Landmesser LT; Herlitze S
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17816-21. PubMed ID: 16306259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.
    Zhang Y; Yue J; Ai M; Ji Z; Liu Z; Cao X; Li L
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E865-9. PubMed ID: 25171072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels.
    Ishizuka T; Kakuda M; Araki R; Yawo H
    Neurosci Res; 2006 Feb; 54(2):85-94. PubMed ID: 16298005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin.
    Wen L; Wang H; Tanimoto S; Egawa R; Matsuzaka Y; Mushiake H; Ishizuka T; Yawo H
    PLoS One; 2010 Sep; 5(9):e12893. PubMed ID: 20886118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrethroid modulation of spontaneous neuronal excitability and neurotransmission in hippocampal neurons in culture.
    Meyer DA; Carter JM; Johnstone AF; Shafer TJ
    Neurotoxicology; 2008 Mar; 29(2):213-25. PubMed ID: 18243323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channelrhodopsin-2 localised to the axon initial segment.
    Grubb MS; Burrone J
    PLoS One; 2010 Oct; 5(10):e13761. PubMed ID: 21048938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.
    Takahashi H; Sakurai T; Sakai H; Bakkum DJ; Suzurikawa J; Kanzaki R
    Biosystems; 2012 Feb; 107(2):106-12. PubMed ID: 22019848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channelrhodopsin as a tool to investigate synaptic transmission and plasticity.
    Schoenenberger P; Schärer YP; Oertner TG
    Exp Physiol; 2011 Jan; 96(1):34-9. PubMed ID: 20562296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections.
    Petreanu L; Huber D; Sobczyk A; Svoboda K
    Nat Neurosci; 2007 May; 10(5):663-8. PubMed ID: 17435752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the spatial resolution of Channelrhodopsin-2 activation.
    Schoenenberger P; Grunditz A; Rose T; Oertner TG
    Brain Cell Biol; 2008 Aug; 36(1-4):119-27. PubMed ID: 18654856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal fast optical interrogation of neural circuitry.
    Zhang F; Wang LP; Brauner M; Liewald JF; Kay K; Watzke N; Wood PG; Bamberg E; Nagel G; Gottschalk A; Deisseroth K
    Nature; 2007 Apr; 446(7136):633-9. PubMed ID: 17410168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons.
    Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N
    Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.
    Berlinguer-Palmini R; Narducci R; Merhan K; Dilaghi A; Moroni F; Masi A; Scartabelli T; Landucci E; Sili M; Schettini A; McGovern B; Maskaant P; Degenaar P; Mannaioni G
    PLoS One; 2014; 9(9):e108689. PubMed ID: 25265500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-evoked synaptic transmission in cultured hippocampal neurons expressing channelrhodopsin-2 delivered by adeno-associated virus.
    Wang J; Hasan MT; Seung HS
    J Neurosci Methods; 2009 Oct; 183(2):165-75. PubMed ID: 19560489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
    Nagel G; Szellas T; Huhn W; Kateriya S; Adeishvili N; Berthold P; Ollig D; Hegemann P; Bamberg E
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13940-5. PubMed ID: 14615590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
    Lin JY; Lin MZ; Steinbach P; Tsien RY
    Biophys J; 2009 Mar; 96(5):1803-14. PubMed ID: 19254539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons.
    Jahn K; Grosskreutz J; Haastert K; Ziegler E; Schlesinger F; Grothe C; Dengler R; Bufler J
    Neuroscience; 2006 Nov; 142(4):1019-29. PubMed ID: 16949760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-site optical excitation using ChR2 and micro-LED array.
    Grossman N; Poher V; Grubb MS; Kennedy GT; Nikolic K; McGovern B; Berlinguer Palmini R; Gong Z; Drakakis EM; Neil MA; Dawson MD; Burrone J; Degenaar P
    J Neural Eng; 2010 Feb; 7(1):16004. PubMed ID: 20075504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.