These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 16306265)

  • 1. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity.
    Lathem WW; Crosby SD; Miller VL; Goldman WE
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17786-91. PubMed ID: 16306265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis.
    Lee-Lewis H; Anderson DM
    Infect Immun; 2010 Jan; 78(1):220-30. PubMed ID: 19841077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague.
    Eichelberger KR; Sepúlveda VE; Ford J; Selitsky SR; Mieczkowski PA; Parker JS; Goldman WE
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the Pulmonary MyD88 Inflammatory Response Underlies the Role of the Yersinia pestis Pigmentation Locus in Primary Pneumonic Plague.
    Olson RM; Dhariwala MO; Mitchell WJ; Skyberg JA; Anderson DM
    Infect Immun; 2021 Feb; 89(3):. PubMed ID: 33257532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional profiling of a mice plague model: insights into interaction between Yersinia pestis and its host.
    Liu H; Wang H; Qiu J; Wang X; Guo Z; Qiu Y; Zhou D; Han Y; Du Z; Li C; Song Y; Yang R
    J Basic Microbiol; 2009 Feb; 49(1):92-9. PubMed ID: 18759226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo transcriptional profiling of Yersinia pestis reveals a novel bacterial mediator of pulmonary inflammation.
    Pechous RD; Broberg CA; Stasulli NM; Miller VL; Goldman WE
    mBio; 2015 Feb; 6(1):e02302-14. PubMed ID: 25691593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shift from primary pneumonic to secondary septicemic plague by decreasing the volume of intranasal challenge with Yersinia pestis in the murine model.
    Olson RM; Anderson DM
    PLoS One; 2019; 14(5):e0217440. PubMed ID: 31121001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yersinia pestis Exploits Early Activation of MyD88 for Growth in the Lungs during Pneumonic Plague.
    Olson RM; Dhariwala MO; Mitchell WJ; Anderson DM
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30642901
    [No Abstract]   [Full Text] [Related]  

  • 9. A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague.
    Kaman WE; Hawkey S; van der Kleij D; Broekhuijsen MP; Silman NJ; Bikker FJ
    Folia Microbiol (Praha); 2011 Mar; 56(2):95-102. PubMed ID: 21468758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intranasal Inoculation of Mice with Yersinia pestis and Processing of Pulmonary Tissue for Analysis.
    Pechous RD
    Methods Mol Biol; 2019; 2010():17-28. PubMed ID: 31177428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posttranscriptional regulation of the Yersinia pestis cyclic AMP receptor protein Crp and impact on virulence.
    Lathem WW; Schroeder JA; Bellows LE; Ritzert JT; Koo JT; Price PA; Caulfield AJ; Goldman WE
    mBio; 2014 Feb; 5(1):e01038-13. PubMed ID: 24520064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Yersinia pestis GTPase BipA Promotes Pathogenesis of Primary Pneumonic Plague.
    Crane SD; Banerjee SK; Eichelberger KR; Kurten RC; Goldman WE; Pechous RD
    Infect Immun; 2021 Jan; 89(2):. PubMed ID: 33257531
    [No Abstract]   [Full Text] [Related]  

  • 13. Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague.
    Ritzert JT; Lathem WW
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29555700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.
    Eddy JL; Schroeder JA; Zimbler DL; Caulfield AJ; Lathem WW
    J Thromb Haemost; 2016 Sep; 14(9):1833-43. PubMed ID: 27377187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague.
    Sha J; Agar SL; Baze WB; Olano JP; Fadl AA; Erova TE; Wang S; Foltz SM; Suarez G; Motin VL; Chauhan S; Klimpel GR; Peterson JW; Chopra AK
    Infect Immun; 2008 Apr; 76(4):1390-409. PubMed ID: 18227160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression profiling of Yersinia pestis during mouse pulmonary infection.
    Lawson JN; Lyons CR; Johnston SA
    DNA Cell Biol; 2006 Nov; 25(11):608-16. PubMed ID: 17132091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92.
    Agar SL; Sha J; Foltz SM; Erova TE; Walberg KG; Baze WB; Suarez G; Peterson JW; Chopra AK
    Microbes Infect; 2009 Feb; 11(2):205-14. PubMed ID: 19073275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of Braun lipoprotein gene (lpp) and curing of plasmid pPCP1 dramatically alter the virulence of Yersinia pestis CO92 in a mouse model of pneumonic plague.
    Agar SL; Sha J; Baze WB; Erova TE; Foltz SM; Suarez G; Wang S; Chopra AK
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3247-3259. PubMed ID: 19589835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardized Method for Aerosol Challenge of Rodents with Yersinia pestis for Modeling Primary Pneumonic Plague.
    Anderson PE; Olson RM; Willix JL; Anderson DM
    Methods Mol Biol; 2019; 2010():29-39. PubMed ID: 31177429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.
    van Lier CJ; Sha J; Kirtley ML; Cao A; Tiner BL; Erova TE; Cong Y; Kozlova EV; Popov VL; Baze WB; Chopra AK
    Infect Immun; 2014 Jun; 82(6):2485-503. PubMed ID: 24686064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.