BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16306655)

  • 1. Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms.
    Madsen EL; Hobson MA; Shi H; Varghese T; Frank GR
    Phys Med Biol; 2005 Dec; 50(23):5597-618. PubMed ID: 16306655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels.
    Madsen EL; Hobson MA; Shi H; Varghese T; Frank GR
    Ultrasound Med Biol; 2006 Feb; 32(2):261-70. PubMed ID: 16464671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spherical lesion phantoms for testing the performance of elastography systems.
    Madsen EL; Frank GR; Hobson MA; Shi H; Jiang J; Varghese T; Hall TJ
    Phys Med Biol; 2005 Dec; 50(24):5983-95. PubMed ID: 16333168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms.
    Madsen EL; Frank GR; Krouskop TA; Varghese T; Kallel F; Ophir J
    Ultrason Imaging; 2003 Jan; 25(1):17-38. PubMed ID: 12747425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copolymer-in-oil phantom materials for elastography.
    Oudry J; Bastard C; Miette V; Willinger R; Sandrin L
    Ultrasound Med Biol; 2009 Jul; 35(7):1185-97. PubMed ID: 19427100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    Doyley MM; Perreard I; Patterson AJ; Weaver JB; Paulsen KM
    Med Phys; 2010 Aug; 37(8):3970-9. PubMed ID: 20879559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthropomorphic breast phantoms for testing elastography systems.
    Madsen EL; Hobson MA; Frank GR; Shi H; Jiang J; Hall TJ; Varghese T; Doyley MM; Weaver JB
    Ultrasound Med Biol; 2006 Jun; 32(6):857-74. PubMed ID: 16785008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force.
    Gennisson JL; Rénier M; Catheline S; Barrière C; Bercoff J; Tanter M; Fink M
    J Acoust Soc Am; 2007 Dec; 122(6):3211-9. PubMed ID: 18247733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of transverse isotropy in compressed tissue-mimicking phantoms.
    Urban MW; Lopera M; Aristizabal S; Amador C; Nenadic I; Kinnick RR; Weston AD; Qiang B; Zhang X; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1036-46. PubMed ID: 26067038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonlinear elasticity phantom containing spherical inclusions.
    Pavan TZ; Madsen EL; Frank GR; Jiang J; Carneiro AA; Hall TJ
    Phys Med Biol; 2012 Aug; 57(15):4787-804. PubMed ID: 22772074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography.
    Melodelima D; Bamber JC; Duck FA; Shipley JA
    Ultrasound Med Biol; 2007 Jun; 33(6):959-69. PubMed ID: 17445967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic and acoustic properties of vessel mimicking material for elasticity imaging.
    de Korte CL; Céspedes EI; van der Steen AF; Norder B; te Nijenhuis K
    Ultrason Imaging; 1997 Apr; 19(2):112-26. PubMed ID: 9381628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear elastic behavior of phantom materials for elastography.
    Pavan TZ; Madsen EL; Frank GR; Adilton O Carneiro A; Hall TJ
    Phys Med Biol; 2010 May; 55(9):2679-92. PubMed ID: 20400811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of Elastic and Acoustic Properties of an Agar-Based Tissue Mimicking Material.
    Brewin MP; Birch MJ; Mehta DJ; Reeves JW; Shaw S; Kruse C; Whiteman JR; Hu S; Kenz ZR; Banks HT; Greenwald SE
    Ann Biomed Eng; 2015 Oct; 43(10):2587-96. PubMed ID: 25773982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive Model for Designing Soft-Tissue Mimicking Ultrasound Phantoms With Adjustable Elasticity.
    Dahmani J; Laporte C; Pereira D; Belanger P; Petit Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):715-726. PubMed ID: 31725375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characterization of a tissue mimicking psyllium husk gelatin phantom for ultrasound and magnetic resonance imaging.
    Hofstetter LW; Fausett L; Mueller A; Odéen H; Payne A; Christensen DA; Parker DL
    Int J Hyperthermia; 2020; 37(1):283-290. PubMed ID: 32204632
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.