These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
540 related articles for article (PubMed ID: 16307069)
1. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. Tighe M; Lockwood P; Wilson S J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069 [TBL] [Abstract][Full Text] [Related]
2. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229 [TBL] [Abstract][Full Text] [Related]
3. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Steely S; Amarasiriwardena D; Xing B Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851 [TBL] [Abstract][Full Text] [Related]
5. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior. Nakamaru Y; Tagami K; Uchida S Environ Pollut; 2006 May; 141(2):321-6. PubMed ID: 16246477 [TBL] [Abstract][Full Text] [Related]
6. Municipal solid waste compost as a novel sorbent for antimony(V): adsorption and release trials at acidic pH. Diquattro S; Garau G; Lauro GP; Silvetti M; Deiana S; Castaldi P Environ Sci Pollut Res Int; 2018 Feb; 25(6):5603-5615. PubMed ID: 29222659 [TBL] [Abstract][Full Text] [Related]
7. Sorption of selenate on soils and pure phases: kinetic parameters and stabilisation. Loffredo N; Mounier S; Thiry Y; Coppin F J Environ Radioact; 2011 Sep; 102(9):843-51. PubMed ID: 21683486 [TBL] [Abstract][Full Text] [Related]
8. The influence of organic matter on sorption and fate of glyphosate in soil--comparing different soils and humic substances. Albers CN; Banta GT; Hansen PE; Jacobsen OS Environ Pollut; 2009 Oct; 157(10):2865-70. PubMed ID: 19447533 [TBL] [Abstract][Full Text] [Related]
9. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
10. Sorption-desorption of Sb(III) in different soils: Kinetics and effects of the selective removal of hydroxides, organic matter, and humic substances. Li J; Hou H; Hosomi M Chemosphere; 2018 Aug; 204():371-377. PubMed ID: 29674149 [TBL] [Abstract][Full Text] [Related]
11. Investigations into the kinetics and thermodynamics of Sb(III) adsorption on goethite (alpha-FeOOH). Watkins R; Weiss D; Dubbin W; Peel K; Coles B; Arnold T J Colloid Interface Sci; 2006 Nov; 303(2):639-46. PubMed ID: 16989849 [TBL] [Abstract][Full Text] [Related]
12. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Wilson SC; Lockwood PV; Ashley PM; Tighe M Environ Pollut; 2010 May; 158(5):1169-81. PubMed ID: 19914753 [TBL] [Abstract][Full Text] [Related]
13. Sorption of two aromatic acids onto iron oxides: experimental study and modeling. Hanna K J Colloid Interface Sci; 2007 May; 309(2):419-28. PubMed ID: 17303153 [TBL] [Abstract][Full Text] [Related]
14. Antimony leaching from uncarbonated and carbonated MSWI bottom ash. Cornelis G; Van Gerven T; Vandecasteele C J Hazard Mater; 2006 Oct; 137(3):1284-92. PubMed ID: 16730886 [TBL] [Abstract][Full Text] [Related]
15. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite. Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596 [TBL] [Abstract][Full Text] [Related]
16. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Nakamaru YM; Altansuvd J Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941 [TBL] [Abstract][Full Text] [Related]
17. Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy. Fan Y; Zheng C; Huo A; Wang Q; Shen Z; Xue Z; He C Ecotoxicol Environ Saf; 2019 Oct; 181():34-42. PubMed ID: 31158721 [TBL] [Abstract][Full Text] [Related]
18. Methylated arsenic, antimony and tin species in soils. Duester L; Diaz-Bone RA; Kösters J; Hirner AV J Environ Monit; 2005 Dec; 7(12):1186-93. PubMed ID: 16307070 [TBL] [Abstract][Full Text] [Related]
19. Effect of organic matter on mobilization of antimony from nanocrystalline titanium dioxide. Yang H; Lu X; He M Environ Technol; 2018 Jun; 39(12):1515-1521. PubMed ID: 28513293 [TBL] [Abstract][Full Text] [Related]
20. Antimony availability in highly polluted soils and sediments - a comparison of single extractions. Ettler V; Mihaljevic M; Sebek O; Nechutný Z Chemosphere; 2007 Jun; 68(3):455-63. PubMed ID: 17306325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]