BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16307117)

  • 1. The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides.
    Hunter CN; Tucker JD; Niederman RA
    Photochem Photobiol Sci; 2005 Dec; 4(12):1023-7. PubMed ID: 16307117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy studies of native photosynthetic membranes.
    Sturgis JN; Tucker JD; Olsen JD; Hunter CN; Niederman RA
    Biochemistry; 2009 May; 48(17):3679-98. PubMed ID: 19265434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.
    Niederman RA
    Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides.
    Limantara L; Fujii R; Zhang JP; Kakuno T; Hara H; Kawamori A; Yagura T; Cogdell RJ; Koyama Y
    Biochemistry; 1998 Dec; 37(50):17469-86. PubMed ID: 9860862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence micro-spectroscopy study of individual photosynthetic membrane vesicles and light-harvesting complexes.
    Leiger K; Reisberg L; Freiberg A
    J Phys Chem B; 2013 Aug; 117(32):9315-26. PubMed ID: 23859536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides.
    Olsen JD; Sturgis JN; Westerhuis WH; Fowler GJ; Hunter CN; Robert B
    Biochemistry; 1997 Oct; 36(41):12625-32. PubMed ID: 9376369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides.
    Adams PG; Hunter CN
    Biochim Biophys Acta; 2012 Sep; 1817(9):1616-27. PubMed ID: 22659614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex.
    Francia F; Wang J; Venturoli G; Melandri BA; Barz WP; Oesterhelt D
    Biochemistry; 1999 May; 38(21):6834-45. PubMed ID: 10346905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides.
    Chenchiliyan M; Timpmann K; Jalviste E; Adams PG; Hunter CN; Freiberg A
    Biochim Biophys Acta; 2016 Jun; 1857(6):634-42. PubMed ID: 27013332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photosystem of Rhodobacter sphaeroides assembles with zinc bacteriochlorophyll in a bchD (magnesium chelatase) mutant.
    Jaschke PR; Beatty JT
    Biochemistry; 2007 Oct; 46(43):12491-500. PubMed ID: 17910480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant assembly complexes of the reaction center light-harvesting 1 PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides imaged by atomic force microscopy.
    Olsen JD; Adams PG; Jackson PJ; Dickman MJ; Qian P; Hunter CN
    J Biol Chem; 2014 Oct; 289(43):29927-36. PubMed ID: 25193660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides.
    Gall A; Cogdell RJ; Robert B
    Biochemistry; 2003 Jun; 42(23):7252-8. PubMed ID: 12795622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides.
    Adams PG; Mothersole DJ; Ng IW; Olsen JD; Hunter CN
    Biochim Biophys Acta; 2011 Sep; 1807(9):1044-55. PubMed ID: 21663730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The native architecture of a photosynthetic membrane.
    Bahatyrova S; Frese RN; Siebert CA; Olsen JD; Van Der Werf KO; Van Grondelle R; Niederman RA; Bullough PA; Otto C; Hunter CN
    Nature; 2004 Aug; 430(7003):1058-62. PubMed ID: 15329728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides.
    Polívka T; Niedzwiedzki D; Fuciman M; Sundström V; Frank HA
    J Phys Chem B; 2007 Jun; 111(25):7422-31. PubMed ID: 17547450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment.
    Braun P; Olsen JD; Strohmann B; Hunter CN; Scheer H
    J Mol Biol; 2002 May; 318(4):1085-95. PubMed ID: 12054804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers.
    Woronowicz K; Sha D; Frese RN; Niederman RA
    Biochemistry; 2011 Jun; 50(22):4819-29. PubMed ID: 21366273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of the developing intracytoplasmic membrane in Rhodobacter sphaeroides during adaptation to low light intensity.
    Woronowicz K; Niederman RA
    Adv Exp Med Biol; 2010; 675():161-78. PubMed ID: 20532741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides.
    Hunter CN; Pennoyer JD; Niederman RA
    Prog Clin Biol Res; 1982; 102 Pt B():257-65. PubMed ID: 6761687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.