BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16307380)

  • 1. Sphingolipids: modulators of HIV-1 infection and pathogenesis.
    Rawat SS; Johnson BT; Puri A
    Biosci Rep; 2005; 25(5-6):329-43. PubMed ID: 16307380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion.
    Ablan S; Rawat SS; Viard M; Wang JM; Puri A; Blumenthal R
    Virol J; 2006 Dec; 3():104. PubMed ID: 17187670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement.
    Nguyen DH; Giri B; Collins G; Taub DD
    Exp Cell Res; 2005 Apr; 304(2):559-69. PubMed ID: 15748900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIV receptors and cellular tropism.
    Weiss RA
    IUBMB Life; 2002; 53(4-5):201-5. PubMed ID: 12120995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional expression of CD4, CXCR4, and CCR5 in glycosphingolipid-deficient mouse melanoma GM95 cells and susceptibility to HIV-1 envelope glycoprotein-triggered membrane fusion.
    Rawat SS; Eaton J; Gallo SA; Martin TD; Ablan S; Ratnayake S; Viard M; KewalRamani VN; Wang JM; Blumenthal R; Puri A
    Virology; 2004 Jan; 318(1):55-65. PubMed ID: 14972535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review).
    Rawat SS; Viard M; Gallo SA; Rein A; Blumenthal R; Puri A
    Mol Membr Biol; 2003; 20(3):243-54. PubMed ID: 12893532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes.
    Barrero-Villar M; Cabrero JR; Gordón-Alonso M; Barroso-González J; Alvarez-Losada S; Muñoz-Fernández MA; Sánchez-Madrid F; Valenzuela-Fernández A
    J Cell Sci; 2009 Jan; 122(Pt 1):103-13. PubMed ID: 19066282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unwelcome guests with master keys: how HIV enters cells and how it can be stopped.
    Doms RW
    Top HIV Med; 2004; 12(4):100-3. PubMed ID: 15516706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide, peptidomimetic and small-molecule drug discovery targeting HIV-1 host-cell attachment and entry through gp120, gp41, CCR5 and CXCR4.
    Kazmierski WM; Kenakin TP; Gudmundsson KS
    Chem Biol Drug Des; 2006 Jan; 67(1):13-26. PubMed ID: 16492145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chemokine receptors and its importance in the replication cycle of human immunodeficiency virus: clinical and therapeutic implications].
    Azevedo-Pereira JM; Santos-Costa Q
    Acta Med Port; 2008; 21(5):497-504. PubMed ID: 19187693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of the entry of HIV into host cells.
    Meanwell NA; Kadow JF
    Curr Opin Drug Discov Devel; 2003 Jul; 6(4):451-61. PubMed ID: 12951808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific CD4 down-modulating compounds with potent anti-HIV activity.
    Vermeire K; Schols D
    J Leukoc Biol; 2003 Nov; 74(5):667-75. PubMed ID: 12960237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV-1, lipid rafts, and antibodies to liposomes: implications for anti-viral-neutralizing antibodies.
    Alving CR; Beck Z; Karasavva N; Matyas GR; Rao M
    Mol Membr Biol; 2006; 23(6):453-65. PubMed ID: 17127618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raft localization of CXCR4 is primarily required for X4-tropic human immunodeficiency virus type 1 infection.
    Kamiyama H; Yoshii H; Tanaka Y; Sato H; Yamamoto N; Kubo Y
    Virology; 2009 Mar; 386(1):23-31. PubMed ID: 19178925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic tradeoffs in the raft-mediated entry of human immunodeficiency virus type 1 into cells.
    Lim KI; Yin J
    Biotechnol Bioeng; 2006 Feb; 93(2):246-57. PubMed ID: 16136590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments.
    Imai M; Baranyi L; Okada N; Okada H
    Biochem Biophys Res Commun; 2007 Feb; 353(4):851-6. PubMed ID: 17210123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains.
    Nisole S; Krust B; Hovanessian AG
    Exp Cell Res; 2002 Jun; 276(2):155-73. PubMed ID: 12027446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific interaction of CXCR4 with CD4 and CD8alpha: functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion.
    Basmaciogullari S; Pacheco B; Bour S; Sodroski J
    Virology; 2006 Sep; 353(1):52-67. PubMed ID: 16808956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus.
    Kozak SL; Heard JM; Kabat D
    J Virol; 2002 Feb; 76(4):1802-15. PubMed ID: 11799176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5.
    Hug P; Lin HM; Korte T; Xiao X; Dimitrov DS; Wang JM; Puri A; Blumenthal R
    J Virol; 2000 Jul; 74(14):6377-85. PubMed ID: 10864648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.